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Abstract. Utilizing NASA HORIZONS Web-Interface we obtain the
position vectors for some of the planets in our solar system and com-
pute the parametrizations of their orbits around the sun. For sake of
completeness, leading up to the results we discuss ways of finding best
fitting lines, hyperplanes, and then the ellipse. For each we consider
ways of measuring the error of the best-fit solution. There are many ex-
amples done in Mathematica illustrating the procedures and techniques
discussed. If you are interested in any of the source code used for the
procedures in Mathematica, please feel free to reach out to me at Email:
carmancater@yahoo.com
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2. Introduction

We begin our exploration of best fitting curves in Section 3 where we
explore how to find the best line through a set of points in R2 with regards
to minimizing the orthogonal distances from the points to the line. In this
procedure we find an interesting result where we end up with two lines. The
best fit line, as well as it’s perpendicular. This can be used to compute some
parameters of a planet’s orbit when we notice that the two lines produced
seem to be good approximations of the major and minor axes. This is left
for future study. Section 4 provides an example of our best fitting line
procedure.

Section 5 provides a technique when given a set of points in Rn to find
the best hyperplane through the set of points that minimizes orthogonal
distance. Interestingly, we find that this procedure gives perpendicular so-
lutions similar to the perpendicular lines in the best line procedure. In the
case of R3 we end up with three mutually orthogonal planes that appear to
evenly distribute the set of points into octants. In particular, this procedure
for finding the best plane through a set of points in R3 will be used when
getting the parametrizations for the orbits of the planets. Section 6 provides
an example of the best hyperplane procedure.
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Section 7 covers three possible procedures for finding a best fitting ellipse
to a set of points in R2. In Approach 1 we consider the equation of an

ellipse of the form (x−h)2
a2

+ (y−k)2
b2

= 1 and use minimization functions in
Mathematica such as gradient descent to produce a best fit ellipse. We
discuss some flaws of this approach. Approach 2 starts from the equation of
a generic conic Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, and after defining a
way to measure the error from a point to the conic we find an exact solution
set for the set of coefficients A,B,C,D,E, F using partial derivatives and
matrix algebra. Approach 3 starts from the equation (1− e2)Bx2 + By2 +
Cx+Dy−1 = 0 thus forcing the eccentricity beforehand. The procedure of
solving for the coefficients is identical to approach 2. Examples are provided
following approaches 2 and 3. Also considered is one approach for computing
the true error of the best fitting ellipse, using perpendicular distance from
a point to the ellipse as our measure. The author finds this particularly
interesting. For a large set of points the approach used is computationally
intensive, but can easily be carried out in Mathematica.

In Section 8 we go into depth on the full procedure of finding the parametriza-
tions of some of the planets in our solar system. Items covered in this section
include

• Downloading and importing position vectors from the NASA HORI-
ZONS Web-Interface
• Computing the plane of best fit
• Projecting the points onto the plane of best fit
• Computing the ellipse of best fit in R3

• Full example of the procedure

Lastly, Section 9 shows images of the orbits for Mercury, Venus, Earth,
Mars, and Jupiter, as well as the full parametrizaitons in kilometers, and
orbital parameters including the lengths of the semi-major/minor axes and
eccentricity.

3. Best Line

Suppose we have a collection of points S = {p1, . . . , pm} in R2. We are
interested in finding a line ` = {(x, y) ∈ R2 : ax + by + c = 0} that best
fits these points. A natural way to find this line is to minimize the sum
of orthogonal distances from each point pi to the line `. The orthogonal

distance from pi to ` is given by d(pi, `) =
|axi + byi + c|√

a2 + b2
.

If instead of (a, b) we use a unit vector (cos(θ), sin(θ)) our distance formula
reduces to d(pi, `) = |xi cos(θ) + yi sin(θ) + c|.

Therefore the function we are trying to minimize is
∑m

i=1 |xi cos(θ) +
yi sin(θ) + c|. For convenience we will be minimizing the sum of the squared
perpendicular distances

f(θ, c) =
m∑
i=1

(xi cos(θ) + yi sin(θ) + c)2

Experimentally this approach appears to provide a good approximation
to argmin (

∑m
i=1 |xi cos(θ) + yi sin(θ) + c|).
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For a given point (xi, yi), a θ and a c the squared orthogonal distance
from the point to the line is (xi cos(θ) + yi sin(θ) + c)2 which is what we will
refer to as the error. A direct computation shows that if pi = (xi, yi) and
we define

X = (x1, . . . , xm) ∈ Rm, Y = (y1, . . . , ym) ∈ Rm u = (1, . . . , 1) ∈ Rm

then we can re-write f as follows

f(θ, c) = |X|2 cos2(θ) + |Y |2 sin2(θ) + (X · Y ) sin(2θ)

+ (X · u)2c cos(θ) + (Y · u)2c sin(θ) +mc2

where u ·v is the Euclidean dot product and |u| is the Euclidean norm. To
find our potential candidates for the minimum we set each partial derivative
equal to zero and solve for θ and c.

∂f

∂c
= 2(X · u) cos(θ) + 2(Y · u) sin(θ) + 2mc = 0

∂f

∂θ
= sin(2θ)(|Y |2 − |X|2) + 2(X · Y ) cos(2θ)

− 2c(X · u) sin(θ) + 2c(Y · u) cos(θ) = 0

From the first equation we get

c = − 1

m
((X · u) cos(θ) + (Y · u) sin(θ))

Plugging this expression for c into the second equation and simplifying
using a few trigonometric identities yields

sin(2θ)

[
(|Y |2 − |X|2)− 1

m
((Y · u)2 − (X · u)2)

]
+ cos(2θ)

[
2(X · Y )− 2

m
(X · u)(Y · u)

]
= 0

Assuming cos(2θ) 6= 0, rearranging and dividing by cos(2θ) gives us

tan(2θ) =
2((X · u)(Y · u)−m(X · Y ))

m(|Y |2 − |X|2)− ((Y · u)2 − (X · u)2)

Therefore we have that

θ =
1

2
arctan

(
2((X · u)(Y · u)−m(X · Y ))

m(|Y |2 − |X|2)− ((Y · u)2 − (X · u)2)

)
Since tan(2θ) has period π

2 we get two values θ and θ + π
2 . Now that we

have θ, using the equation above we compute our c.
So given a set of m points in R2 the procedure for finding the line of best

fit is as follows

(1) Compute θ1, θ2 = θ1 + π
2 and their corresponding values c1 and c2.
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(2) For each of the two possibilities, plug the values for θi, ci into f(θ, c)
and take the solution with the smaller value.

(3) Thus the best fit line is given by x cos(θi) + y sin(θi) + ci = 0

True Error. If interested in computing the true error of the line of best
fit, simply compute

m∑
i=1

|xi cos(θ) + yi sin(θ) + c|

which gives the sum of the perpendicular distances from each point to the
line.

4. Best Line Example

Take the set of points S = {(1, 1), (2, 1), (3, 2), (6, 4), (5, 3), (4, 4), (7, 3)}
and letX = (1, 2, 3, 6, 5, 4, 7), Y = (1, 1, 2, 4, 3, 4, 3), and u = (1, 1, 1, 1, 1, 1, 1)
with m = 7.

Substituting into our formulas for θ and c gives us two sets of critical
values

(θ, c1) ≈ (0.478931,−4.73495)

(θ +
π

2
, c2) ≈ (2.04973,−0.438791)

with errors (squared perpendicular distance) given by f(θ, c1) ≈ 34.7503
and f(θ + π

2 , c2) ≈ 2.964. Thus our line of best fit is `2 and the equation of
the other solution for θ is `1 given by

`1 : −4.73495 + 0.887488x+ 0.46083y = 0

`2 : −0.438791− 0.46083x+ 0.887488y = 0

Figure 1. Blue: `1, Green: `2
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5. Best Hyperplane

Notice in the best line example above we get two perpendicular lines that
appear to evenly distribute the points into four quadrants. This can be
generalized. For example, in the best plane example below with points in
R3 we get three mutually orthogonal planes giving us eight octants that try
to evenly distribute the points.

Let us assume that we have a collection of points S = {p1, . . . , pm} in Rn
and that we are interested in finding the best hyperplane Π = {(x1, . . . , xn) ∈
Rn : a1x1 + · · · + anxn + b = 0} that fits these points. A natural way to
select this plane is to find the one that minimize the sum of the perpendicular
distances from the points to the plane. If we assume that the vector a =
(a1, . . . , an) is a unit vector, then the distance from pi to the plane Π is
given by |pi · a+ b| where u · v is the Euclidean dot product. Therefore, the
function to minimize is the function

∑m
i=1 |pi · a + b|. For convenience we

will be minimizing the function

f(a, b) =
m∑
i=1

(pi · a+ b)2 subject to g(a, b) = a · a = 1

Using the method of Lagrange multiplier, we get the possible minimums
happen at points (a, b, λ) ∈ Rn+1 such that ∇f = λ∇g and g(a, b) = 1. A
direct computation shows that if pi = (xi1, xi2, . . . , xin) and we define

X1 = (x11, . . . , xm1) ∈ Rm, . . . , Xn = (x1n, . . . , xmn) ∈ Rm andu = (1, . . . , 1) ∈ Rm

and the n× n matrix M with entry i, j given by the dot product Xi ·Xj ,

the vector v ∈ Rn with ith entry Xi · u, and L the matrix with entry i, j
given by the product vivjthen we can rewrite f as follows

f(a, b) =

m∑
i=1

(pi · a)2 + 2b

m∑
i=1

(pi · a) +mb2

=
m∑
i=1

(
n∑
j=1

xijaj)
2 + 2b

m∑
i=1

n∑
j=1

xijaj +mb2

=

m∑
i=1

n∑
j=1

n∑
k=1

xijajxikak + 2b

n∑
j=1

aj

m∑
i=1

xij +mb2

= a ·Ma+mb2 + 2b a · v

From the expression above we get that the gradient of f(a, b) is

∇f = (2Ma+ 2bv, 2mb+ 2a · v)

Since ∇g = (2a, 0) then we can write the equations ∇f = λ∇g as

Ma+ bv = λa and mb+ a · v = 0

Therefore b = − 1
ma · v and Ka = λa where K = M − 1

mL.
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So given a set of m points in Rn the procedure for finding the hyperplane
of best fit is as follows

(1) Compute the matrices M , v, and L
(2) Compute the matrix K and its eigenvectors
(3) For each eigenvector a, compute the constant term b
(4) The elements of a are the coefficients of the hyperplane and b is the

constant term a1x1 + · · ·+ anxn + b = 0
(5) Plugging each solution into the function f(a, b) and taking the one

that gives the smallest value is the plane of best fit

True Error. If interested in computing the true error of the hyperplane of
best fit, simply compute

m∑
i=1

|pi · a+ b|√∑n
j=1 a

2
j

which gives the sum of the perpendicular distances from each point to the
hyperplane.

6. Best Plane Example

Take the set of m = 7 points in R3 to be

S = {(1, 1, 2), (1, 2.5, 1), (2, 1.5, 1), (3, 2, 1), (3, 3, 2), (4, 3, 2), (1, 0.75, 1)}

A direct computation gives us

M =

 41 34.25 23
34.25 32.0625 20.75

23 20.7 16

 L =

 225 206.25 150
206.25 189.063 137.5

150 137.5 100



K =

 62/7 4.78571 11/7
4.78571 5.05357 1.10714

11/7 1.10714 12/7

 v =
(
15 13.75 10

)
such that the eigenvalues and eigenvectors of K are

ξ1 = 12.449 a1 = (−0.814171,−0.553232,−0.176239)
ξ2 = 1.80811 a2 = (0.571409,−0.817313,−0.0741071)
ξ3 = 1.36767 a3 = (−0.103044,−0.161041, 0.981554)

Computing our constant terms bi we get three candidates for the plane
of best fit

Π1 : 3.08313− 0.814171x− 0.553232y − 0.176239z = 0

Π2 : 0.486855 + 0.571409x− 0.817313y − 0.0741071z = 0

Π3 : −0.865081− 0.103044x− 0.161041y + 0.981554z = 0

with error (squared perpendicular distance) terms f(a1, b1) ≈ 12.4492,
f(a2, b2) ≈ 1.80811 and f(a3, b3) ≈ 1.36767. Therefore our plane of best fit
is Π3. See Figures below.
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Figure 2. Plane of best fit Π3 for S

Figure 3. Π1,Π2,Π3 divide R3 into octants. In this case
Π3 is the best plane

7. Best Ellipse

We will be considering three approaches for finding the best fitting ellipse
given a set of points in R2. In the first approach we use a gradient descent
algorithm such as the one included in the program Mathematica. In the
second and third approach we solve it directly using partial derivatives and
matrix algebra.

Our first approach using gradient descent requires us to find starting
estimates for h, k, a, b, θ beforehand using relatively simple procedures in
Mathematica.

For the second approach we take the equation for a general conic section
and sum over all of our points, squaring each term. Minimizing this function
is straight forward by taking partial derivatives and solving a system of linear
equations.

In the third approach we perform some simple procedures in Mathematica
to get an estimate on the angle the predicted major axis makes with the
positive x-axis as well as the eccentricity. With these two extra pieces of
information we perform a change of coordinates and remove the xy term
from the equation of the conic, as well as force the eccentricity.

Since the orbits of planets are very close to perfect ellipses, all of our
approaches will be assuming the equation of the conic represents an ellipse.
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Approach 1. Recall that in the procedure for the best line and hyperplane
we were able to use only the equation of the line and hyperplane. We follow
a similar procedure here, in that we will use an equation of an ellipse and
nothing else.

Let S = {p1, . . . , pm} be a collection of points in R2 under the standard
basis. We define a new orthonormal basis given by B = {e′1, e′2} where
e′1 = (cos(θ), sin(θ)) and e′2 = (− sin(θ), cos(θ)). So for any point pi = (xi, yi)
we have in the new coordinate system the point (ui, vi) = (pi · e′1, pi · e′2).
Furthermore, if c = (h, k) under the standard basis, we take (hu, kv) =
(c · e′1, c · e′2)

Thus the equation of a rotated ellipse given θ, a, b, h, k is given by

(u− hu)2

a2
+

(v − kv)2

b2
− 1 = 0

where θ is the counterclockwise angle from the positive x direction. Notice

that if a point pi is on the ellipse then (ui−hu)2
a2

+ (vi−kv)2
b2

− 1 = 0, otherwise

| (ui−hu)2
a2

+ (vi−kv)2
b2

− 1 |> 0. We will take this to be our measure of how
close a point is to the ellipse. For convenience we will be minimizing the
function

f(a, b, h, k, θ) =
m∑
i=1

(
(ui − hu)2

a2
+

(vi − kv)2

b2
− 1

)2

using Mathematica. There are two obvious issues with this approach.
The first is that we may get stuck at a local minimum. The second is that
the gradient descent algorithm might make a and b arbitrarily large. In the
first example we will use the best line procedure to give us initial estimates
for a, b, and θ.

Example of Approach 1. Coming soon.

Approach 2. Let S = {p1, . . . , pm} be a collection of points in R2. The
equation for a generic conic can be written as

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

Taking the algebraic distance as our measure, we are interested in mini-
mizing the function

f(A,B,C,D,E) =

m∑
i=1

(Ax2i +Bxiyi + Cy2i +Dxi + Eyi − 1)2

Notice that we let F = −1. This is because we can always multiply
through the equation by a constant term. However, this restricts our conic
in that it cannot pass through the origin (0, 0). Expanding f and taking
partial derivatives yields
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∂f

∂A
= 2A(X4Y0) + 2B(X3Y1) + 2C(X2Y2) + 2D(X3Y0) + 2E(X2Y1)− 2(X2Y0)

∂f

∂B
= 2A(X3Y1) + 2B(X2Y2) + 2C(X1Y3) + 2D(X2Y1) + 2E(X1Y2) +−2(X1Y1)

∂f

∂C
= 2A(X2Y2) + 2B(X1Y3) + 2C(X0Y4) + 2D(X1Y2) + 2E(X0Y3)− 2(X0Y2)

∂f

∂D
= 2A(X3Y0) + 2B(X2Y1) + 2C(X1Y2) + 2D(X2Y0) + 2E(X1Y1)− 2(X1Y0)

∂f

∂E
= 2A(X2Y1) + 2B(X1Y2) + 2C(X0Y3) + 2D(X1Y1) + 2E(X0Y2)− 2(X0Y1)

such that XjYk =
∑m

i=1 x
j
iy
k
i .

Setting each equation equal to zero yields the matrix equation Ax = b
where

A =


X4Y0 X3Y1 X2Y2 X3Y0 X2Y1
X3Y1 X2Y2 X1Y3 X2Y1 X1Y2
X2Y2 X1Y3 X0Y4 X1Y2 X0Y3
X3Y0 X2Y1 X1Y2 X2Y0 X1Y1
X2Y1 X1Y2 X0Y3 X1Y1 X0Y2

 x =


A
B
C
D
E

 b =


X2Y0
X1Y1
X0Y2
X1Y0
X0Y1


Notice that A is a symmetric matrix. Assuming the Det(A) 6= 0 gives us

a unique solution x = A−1b.

Example of Approach 2. Take the set of m = 7 points in R2 to be

S = {(2, 1), (2, 4), (3, 1), (3, 6), (4, 2), (5, 4), (5, 6)}

A direct computation gives us

A =


1700 1607 1765 384 365
1607 1765 2213 365 421
1765 2213 3122 421 570
384 365 421 92 89
365 421 570 89 110

 b =


92
89
110
24
24


where Det(A) = 57, 566, 592 and therefore has a unique inverse. We leave

the computation of A−1 to the reader. Therefore we have as a solution

x = A−1b ≈


−0.15008
0.0885364
−0.0512472

0.684014
0.0894444


Thus the equation of our best fitting ellipse (see figure below) is given by

−0.15008x2 + 0.0885364xy− 0.0512472y2 + 0.684014x+ 0.0894444y− 1 = 0
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Figure 4

Approach 3. Assume we have a set of points in R2 that approximate an
axis aligned ellipse with eccentricity e that does not contain the origin. Then
a direct computation shows that we can look for an ellipse of the form

(1− e2)Bx2 +By2 + Cx+Dy − 1 = 0

Using the same notation and following the same procedure as in approach
1 we have that Ax = b where

A =

X4Y0(1− e2)2 + 2X2Y2(1− e2) +X0Y4 X3Y0(1− e2) +X1Y2 X2Y1(1− e2) +X0Y3
X3Y0(1− e2) +X1Y2 X2Y0 X1Y1
X2Y1(1− e2) +X0Y3 X1Y1 X0Y2



x =

BC
D

 b =

X2Y0(1− e2) +X0Y2
X1Y0
X0Y1


Notice that A is a symmetric matrix. Assuming the Det(A) 6= 0 gives us

a unique solution x = A−1b.

Example of Approach 3. While in a real application we will use other meth-
ods for computing the approximate eccentricity and angle the major axis
makes with the positive x-axis, to illustrate Approach 3 we use our result
from Approach 2 as a starting point. Using the equation we found we di-
rectly compute the eccentricity and angle the major axis of our ellipse makes
with the positive x-axis giving us

e ≈ 0.891353, θ ≈ 1.205545
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For each point pi ∈ S we perform a change of basis by computing (pi ·
(cos θ, sin θ), pi · (− sin θ, cos θ)) giving us

S′ = {(1.6484,−1.51088), (4.4505,−0.439331), (2.00559,−2.44492),

(6.67576,−0.658996), (3.2968,−3.02177), (5.52206,−3.24143), (7.39012,−2.52706)}
A direct computation shows

A =

885.103 361.556 −162.33
361.556 167.088 −60.2855
−162.33 −60.2855 34.9117

 b =

 69.2468
30.9892
−13.8444


where Det(A) = 56113.6 and therefore has a unique inverse. Thus the

solution is

x = A−1b ≈

−0.167008
0.327863
−0.606944


The equation of our best fitting ellipse is given by

−0.0343186x2 + 0.327863x− 0.167008y2 − 0.606944y − 1 = 0

Figure 5

Note that if we wish to have the equation of this ellipse model our original
(non-axis aligned) set of points, we simply use the angle θ found above and
replace x→ x cos θ+y sin θ and y → −x sin θ+y cos θ giving us the equation
found above in the example of Approach 1

−0.15008x2 + 0.0885364xy− 0.0512472y2 + 0.684014x+ 0.0894444y− 1 = 0

True Error. In order to determine how well our ellipse fits the set of points
we use the method of Lagrange Multiplier. In particular we would like to
find the point on the ellipse closest to our given point. Naturally the line
segment joining these two points will be perpendicular to the ellipse. In
order to accomplish this we use a program written in Mathematica.

Suppose we have an equation of an ellipse given by g(x, y) = ax2 + bxy+
cy2 + dx + ey − 1 = 0. For each point (xi, yi) we would like to minimize
the function f(x, y) = (x − xi)2 + (y − yi)2 subject to the constraint that
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g(x, y) = 0. Using the method of Lagrange Multiplier we have ∇f = λ∇g
which yields

{2(x− xi), 2(y − yi)} = λ{d+ 2ax+ by, e+ bx+ 2cy}
Solving for x and y in terms of λ gives

x =
−2xi − dλ− bλ(4yi+2eλ+2bxiλ−4ayiλ+bdλ2−2aeλ2)

4−4aλ−4cλ−b2λ2+4acλ2

2(−1 + aλ)

y =
4yi + 2eλ+ 2bxiλ− 4ayiλ+ bdλ2 − 2aeλ2

4− 4aλ− 4cλ− b2λ2 + 4acλ2

Now plugging these expressions for x and y into g(x, y) = 0 and simpli-
fying yields a degree four polynomial in terms of λ. This is good news as
we have a formula for solving for roots of quartic equations. We let Math-
ematica do the computation for us. We restrict ourselves to only the real
solutions.

Once we have our λ’s we compute our potential candidates (x, y) and see
which choice provides the smallest value of f(x, y). The point (x, y) which
provides the smallest value of f is the closest point on the ellipse to our
point (xi, yi). Therefore the minimum distance from (xi, yi) to our ellipse is√
f(x, y). Doing this procedure for each point (xi, yi) and taking the sum

provides the true error of our best fitting ellipse.
Let us look at an example using Mathematica.

Example of Error. Suppose we have the ellipse

2x2 − 2xy + y2 + x− y − 1 = 0

and set of points

S = {(.5,−.5), (.5, 1.5), (−1, 2), (1, 2.5), (−1.5, 0), (2, 1), (0,−2), (0, 1), (1, 0), (−.5,−.5)}
Using the procedure outlined above in Mathematica we find that the respec-
tive minimum distances from each point to the ellipse are

{0.295205, 0.421668, 0.99862, 0.446779, 0.477917, 0.96163, 1.11803, 0.406836, 0.423511, 0.421668}
with a total error of 5.97187 (see Figure 6 below).

Figure 6. Closest points on an ellipse computing error
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8. The Procedure for the Planets

First we explain the full procedure for finding the parametrization for
Earth. In the next section we list the results for Mercury, Venus, Earth,
Mars, and Jupiter.

Since we are finding equations to model relations, we must define our
coordinate system that is being used. We use the settings given to us in the
Horizons Web Interface. The origin of our coordinate system is taken to be
the Solar System Barycenter. This is the center of mass of our solar system.
Although it is always changing position, it can be thought of as being near
the center of the sun.

The reference plane used is the ecliptic and mean equinox of reference
epoch, and the reference system is ICRF/J2000.0 Documentation regard-
ing reference frames and coordinate systems can be found on the Horizon
documentation page https://ssd.jpl.nasa.gov/?horizons_doc#frames

Downloading and Importing Data. Navigating to the NASA HORI-
ZONS Web-Interface at https://ssd.jpl.nasa.gov/horizons.cgi we down-
load the data for the planet of interest and the Sun using the following
settings

• Ephemeris Type: Vectors
• Target Body: [Your Choice]
• Coordinate Origin: Solar System Barycenter Time Span: Start=2020-
01-01, Stop=2020-12-31, Step=1 d
• Table Settings: quantities code=2; output units=KM-S; CSV for-

mat=YES
• Display/Output: download/save (plain text file)

This provides us with two files (one for the sun, and the other for earth)
containing the date of each observation, along with the x, y, z position
coordinates, and vx, vy, vz velocity coordinates respectively.

We now consider the relative positions of the earth with respect to the
sun taking i = 1, 2, . . . , 366 giving us one full rotation around the sun.

pi = (x, y, z)Earth − (x, y, z)Sun

For the planet results that follow, we pick dates that correspond with a
single period/year, or one full rotation around the sun.

Plane of Best Fit and Projecting Points Into R2. With a table in
Mathematica now containing our position vectors, we are able to use the
procedure outlined in Section 5 to compute the plane of best fit Π : ax +
by + cz + d = 0 with normal vector n = (a, b, c).

Using our plane of best fit we map our points from R3 into R2 using the
following procedure

(1) Using the normal vector n = (a, b, c) from our plane of best fit, we
consider the plane Π′ with normal vector n such that Π′ contains
the origin. This plane is given by the equation ax+ by + cz = 0

https://ssd.jpl.nasa.gov/?horizons_doc#frames
https://ssd.jpl.nasa.gov/horizons.cgi
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(2) Take the orthonormal basis for Π′ given by

e1 =
(1, 0, 0)− ((1, 0, 0) · n)n

‖(1, 0, 0)− ((1, 0, 0) · n)n‖

e2 =
n× e1
‖n× e1‖

Notice that e1 is the unit vector of the projection of (1, 0, 0) into Π′

and Span{e1, e2} = Π′

(3) We now project each point pi onto our basis vectors e1 and e2 giving
us a new set of coordinates given by

p′i = (pi · e1, pi · e2) ∈ R2

Ellipse of Best Fit and Eccentricity. With our set of coordinates now
in R2 we can use Approach 2 outlined in the best ellipse section. This gives
us the equation

(1) ax2 + bxy + cy2 + dx+ ey − 1 = 0

We will now compute the parametrization and eccentricity of (1). To do
this we define two new basis vectors

E1 = (cos θ, sin θ) and E2 = (− sin θ, cos θ)

which form an orthonormal basis of R2. To convert between a point (x, y)
under the standard basis, to the equivalent point (u, v) under the new basis
{E1, E2} we have the set of relations

u = x cos θ + y sin θ

v = −x sin θ + y cos θ

x = u cos θ − v sin θ

y = u sin θ + v cos θ

Making the substitution for x and y into equation (1) gives us

(2) 0 = −1 + e(v cos θ + u sin θ) + c(v cos θ + u sin θ)2

+ d(u cos θ − v sin θ) + b(v cos θ + u sin θ)(u cos θ − v sin θ)

+ a(u cos θ − v sin θ)2

Expanding and collecting the coefficient of the uv term gives us

Coefficient of uv term: b cos2 θ − 2a cos θ sin θ + 2c cos θ sin θ − b sin2 θ

Setting this equation equal to zero and solving for θ yields

θ =
1

2
arctan

(
b

a− c

)
assuming cos(2θ) 6= 0.

Substituting our values for a, b, c from (1) into this equation for θ, and
substituting θ back into (2) we end up with a new equation for the ellipse
with no uv term, and thus its major and minor axes are parallel to the
basis vectors E1 and E2. Note the θ found above is the θ we use in our
orthonormal basis {E1, E2} which defines our coordinates (u, v).
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Using the notation a′, b′, d′, e′ to be our new coefficients after making the
substitution for θ into (2) we have

a′v2 + d′v + b′u2 + e′u = 0

Completing the square gives us the equation of the ellipse(
u+ e′

2b′

)2
1
b′

(
d′2

4a′ + e′2

4b′

) +

(
v + d′

2a′

)2
1
a′

(
d′2

4a′ + e′2

4b′

) = 1

Therefore the parametrization in terms of t ∈ [0, 2π) is

α(t) = (h, k) + r cos t(cos θ, sin θ) + s sin t(− sin θ, cos θ)

where θ is the same θ found above and

h = (
−e′

2b′
,
−d′

2a′
) · (cos θ,− sin θ)

k = (
−e′

2b′
,
−d′

2a′
) · (sin θ, cos θ)

r =

√
1

b′

(
d′2

4a′
+
e′2

4b′

)

s =

√
1

a′

(
d′2

4a′
+
e′2

4b′

)
Furthermore the eccentricity is given by

√
s2 − r2
s

or

√
r2 − s2
r

depending on whether s > r or s ≤ r. We now take this parametrization
α(t) in R2 and put it back into R3 onto its original position in the plane of
best fit.

Recall that our plane of best fit is Π : ax + by + cz + d = 0 with normal
vector n = (a, b, c). We would like to translate our points from Π′ : ax+by+
cz = 0 back to Π. To do this we need to find the point on Π that corresponds
to the origin of Π′. In other words, where the vector n intersects Π.

Letting p0 = tn = t(a, b, c) for some t ∈ R and substituting p0 into the
equation for Π gives us (a2 + b2 + c2)t + d = 0 and since n is a unit vector
t = −d. Thus p0 = −dn = −d(a, b, c).

Therefore the parametrization of the best fitting ellipse through our orig-
inal set of points pi ∈ R3 is given by

φ(t) = p0 + η1E1 + η2E2

where E1, E2 are defined as above and

η1 = h+ r cos t cos θ − s sin t sin θ

η2 = k + r cos t sin θ + s sin t cos θ

Notice that η1, η2 are the first and second entries of α(t) taken from the
equation above.

We now show a full example using a small set of points in R3.
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Example of Procedure. Take the set of m = 10 points in R3 to be

S = {(2, 3.37, 3.45), (0.3, 2.07, 2.26), (0.61, 1.29,−0.27), (1.24, 1.17,−0.55), (2.99, 2.04, 0.95),

(3.48, 3, 3.56), (2.58, 3.8, 2.89), (0.14, 1.49, 1.48), (0.06, 0.56, 0.96), (0.64, 0.57, 0.62)}
Using the procedure for the plane of best fit we find

Π : 0.332541x− 0.840721y + 0.427323z + 0.504806 = 0

with n = (0.332541,−0.840721, 0.427323) and d = 0.504806
Now letting Π′ be the parallel plane through the origin, we compute basis

vectors

E1 = (0.943089, 0.296445,−0.150678)

E2 = (1.02198 · 10−17, 0.453111, 0.891454)

Projecting our set of points onto the basis vectors and using our best
ellipse procedure gives us

α(t) = (2.05437, 2.49305)+2.34605 cos t(cosu, sinu)+1.5626 sin t(− sinu, cosu)

where u = −2.02649 and t ∈ [0, 2π).
Note that α(t) ∈ R2 so our final step is to put it back onto the plane of

best fit Π through the original set of points in R3.
Taking

p0 = (−0.167869, 0.424401,−0.215715)

η1 = 2.05437− 1.03246 cos t+ 1.40315 sin t

η2 = 2.49305− 2.10665 cos t− 0.687677 sin t

where p0 = −dn and η1, η2 are the first and second entries of α(t) gives
us

φ(t) = p0 + η1E1 + η2E2 ∈ R3 for t ∈ [0, 2π)

as our ellipse of best fit through the set of points pi projected onto the plane
Π. See Figure 7 below.

Figure 7. Image showing our plane Π, ellipse φ, and points
(black) pi with their projections (orange)
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9. The Results for the Planets

The number of data points used for each planet is the number of days in
one period (orbit around the sun). The date range of the data used is given
next to the planet name. All results are in kilometers.

Figure 8. Angled view: Positions on January 1, 2021

Figure 9. Top view: Positions on January 1, 2021
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Mercury (2021.01.01 - 2021.03.29)
Semi-major axis 5.7909 · 107 km
Semi-minor axis 5.66714 · 107 km
Eccentricity 0.205633
Parametrization φ(t) = p0 + η1E1 + η2E2 ∈ R3 for t ∈ [0, 2π)
E1 = (0.995847, 0.00741525,−0.0907438)
E2 = (1.17303 · 10−18, 0.996678, 0.0814449)
p0 = (−0.552638, 0.492306,−6.02457)
η1 = −2.62244 · 106 + 5.52795 · 107 cos t+ 1.27559 · 107 sin t
η2 = −1.16159 · 107 − 1.24833 · 107 cos t+ 5.64866 · 107 sin t

Venus (2020.01.01 - 2020.08.12)
Semi-major axis 1.08211 · 108 km
Semi-minor axis 1.08206 · 108 km
Eccentricity 0.00946215
Parametrization φ(t) = p0 + η1E1 + η2E2 ∈ R3 for t ∈ [0, 2π)
E1 = (0.998339, 0.000790377,−0.0576002)
E2 = (−3.64763 · 10−20, 0.999906, 0.0137205)
p0 = (−1.55863, 0.370618,−27.0095)
η1 = 484649.+ 8.14207 · 107 cos t+ 7.12724 · 107 sin t
η2 = −548343.− 7.12756 · 107 cos t+ 8.14171 · 107 sin t

Earth (2020.01.01 - 2020.12.31)
Semi-major axis 1.49597 · 108 km
Semi-minor axis 1.49578 · 108 km
Eccentricity 0.0160063
Parametrization φ(t) = p0 + η1E1 + η2E2 ∈ R3 for t ∈ [0, 2π)
E1 = (1.,−1.29884 · 10−10,−2.80132 · 10−6)
E2 = (−1.93088 · 10−27, 1.,−0.0000463654)
p0 = (0.0000523882, 0.000867092, 18.7013)
η1 = 562934.+ 1.47953 · 108 cos t− 2.19871 · 107 sin t
η2 = −2.43885 · 106 + 2.19843 · 107 cos t+ 1.47972 · 108 sin t

Mars (2019.01.01 - 2020.11.17)
Semi-major axis 2.27947 · 108 km
Semi-minor axis 2.26938 · 108 km
Eccentricity 0.0939591
Parametrization φ(t) = p0 + η1E1 + η2E2 ∈ R3 for t ∈ [0, 2π)
E1 = (0.999699, 0.0005137,−0.0245161)
E2 = (1.17962 · 10−19, 0.999781, 0.020949)
p0 = (5.00288,−4.27273, 203.914)
η1 = −1.94744 · 107 + 2.09228 · 108 cos t+ 9.00624 · 107 sin t
η2 = 8.61113 · 106 − 9.04626 · 107 cos t+ 2.08302 · 108 sin t
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Jupiter (2009.01.01 - 2020.11.09)
Semi-major axis 7.78286 · 108 km
Semi-minor axis 7.77322 · 108 km
Eccentricity 0.049781
Parametrization φ(t) = p0 + η1E1 + η2E2 ∈ R3 for t ∈ [0, 2π)
E1 = (0.99975,−0.0000929091,−0.0223711)
E2 = (1.0625 · 10−20, 0.999991,−0.00415306)
p0 = (−8.40464,−1.55987,−375.592)
η1 = −3.68041 · 107 + 7.63376 · 108 cos t− 1.51425 · 108 sin t
η2 = −9.41362 · 106 + 1.51613 · 108 cos t+ 7.6243 · 108 sin t
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