
Carman S. Cater

Problem 1. A sphere of radius 1 meter centered at the origin is rotating about the z−axis with
an angular speed of one radian per minute so that the point of the sphere located at (1, 0, 0)

at time t = 0 is located at (0, 1, 0) at time t =
π

2
minutes. A ladybug starts walking at time

t = 0 from the north pole towards the south pole along a meridian with a constant speed such

that at time t =
π

2
minutes she will be crossing the equator. Find parametric equations for the

ladybug’s trajectory in R3.

Write an integral that represents the total length of the ladybug’s trajectory from the north pole
to the south pole.

Solution. A nice parametric representation of the unit sphere that works well for us here is
given by

X(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

with 0 < ϕ < π, 0 < θ < 2π. Note in this parametrization ϕ is the angle with the positive
z-axis, while θ is the angle with the positive x-axis.

Setting ϕ(t) = t and θ(t) = t we see that dϕ
dt

= 1, dθ
dt

= 1. Therefore the rotation around
the z-axis has constant angular speed of one radian per minute and our ladybug will travel
the meridian with constant speed. Setting ϕ(t) = π

2
we see that X(π

2
, 0) = (1, 0, 0) and

X(π
2
, π

2
) = (0, 1, 0). This shows us the point of the sphere located at (1, 0, 0) at time t = 0 is

located at (0, 1, 0) at time t =
π

2
.

For the parametrization of the ladybug starting from the north pole and walking towards the
south pole along a meridian with constant speed we take

α(t) = X(t, t) = (sin t cos t, sin2 t, cos t)

with 0 ≤ t ≤ π. At time t = 0 the ladybug is at the north pole α(0) = (0, 0, 1), at time t = π
2

it is crossing the equator α(π
2
) = (0, 1, 0) and at time t = π it has arrived at the south pole

α(π) = (0, 0,−1).

We compute the length of the ladybug’s trajectory from the north pole to the south pole in
two different ways.



Figure 1: The ladybug (green) walking along the meridian (red) traces the curve (blue) as the
sphere rotates counterclockwise about the z-axis with angular speed 1 radian per minute.

The first approach is to compute the first fundamental form of the surface

X = (sinϕ cos θ, sinϕ sin θ, cosϕ)

Xϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ)

Xθ = (− sinϕ sin θ, sinϕ cos θ, 0)

E = Xϕ ·Xϕ = 1

F = Xϕ ·Xθ = 0

G = Xθ ·Xθ = sin2 ϕ

and take ϕ(t) = t and θ(t) = t. Thus our desired integral is given by

L =

∫
I

√
E

(
dϕ

dt

)2

+ 2F
dϕ

dt

dθ

dt
+G

(
dθ

dt

)2

dt

=

∫ π

0

√
1 + sin2 t dt ≈ 3.8202



The second approach is to integrate the speed of α(t) = X(t, t) = (sin t cos t, sin2 t, cos t) for
0 ≤ t ≤ π. Using Mathematica to assist in the computation we see

L =

∫ π

0

|α′(t)| dt

=
1√
2

∫ π

0

√
3− cos 2t dt ≈ 3.8202

where the units are in meters. Note that of course these two definite integrals give the same
value, the integrands are equivalent by the double angle identity for cosine.



Problem 2. A surface S is generated by a horizontal (parallel to the xy−plane) line that
rotates counterclockwise around the z−axis with an angular speed of one radian per minute at
the same time that the horizontal plane that contains it is moving upward (remaining parallel to
the xy−plane with a speed of one meter per minute. Find parametric equations for the surface
S assuming that at time t = 0 the line coincides with the x−axis.

Solution. This is a description of a helicoid. The surface S is generated by the parametrization

X(s, t) = (0, 0, t) + s(cos t, sin t, 0)

with s, t ∈ R. It is clear that as the parameter t varies our point rotates counterclockwise
around the z-axis with an angular speed of one radian per minute, while at the same time
moving upward in the direction of the z-axis with a speed of one meter per minute.

At the time t = 0 the line coincides with the x-axis as seen by

X(s, 0) = (s, 0, 0)

so that as the parameter s varies we get a line coinciding with the x-axis.

Figure 2: A picture of the helicoid being generated by the black line as it moves upward while
rotating counterclockwise around the z-axis with s ∈ [−2, 2] and t ∈ [0, 2π].



Problem 3. A curve γ is given by γ(t) = (cos t, t, cos t) with 0 ≤ t ≤ 2π.

(a) Decide wheter or not the parameter t is arc length parameter for γ.

(b) Prove that the length of γ is L(γ) =

∫ 2π

0

√
1 + 2 sin2 t dt

(c) Find the torsion of the curve at the point γ(π).

Solution (a). No, the parameter t is not an arc length parameter for γ. We compute γ′(t) =
(− sin t, 1,− sin t) and check the speed of γ and notice that

|γ′(t)| =
√

1 + 2 sin2 t

which is definitely not a constant of 1.

Solution (b). The length of the curve γ is given by

L(γ) =

∫ b

a

|γ′(t)| dt

=

∫ 2π

0

√
1 + 2 sin2 t dt ≈ 8.73775

Solution (c). We will use the formula provided in the appendix

τ(t) =
(γ′ × γ′′) · γ′′′

|γ′ × γ′′|2

The necessary computations are

γ = (cos t, t, cos t)

γ′ = (− sin t, 1,− sin t)

γ′′ = (− cos t, 0,− cos t)

γ′′′ = (sin t, 0, sin t)

γ′ × γ′′ = (− cos t, 0, cos t)

(γ′ × γ′′) · γ′′′ = 0

|γ′ × γ′′|2 = 2 cos2 t

Therefore the torsion is zero everywhere, yet at the points (2n−1)π
2

with n ∈ Z+ it is undefined.
Thus τ(π) = 0. This implies that γ lies in a fixed plane spanned by the tangent and normal
vectors as seen in the images on the next page.





Problem 4. Let a, b be positive real numbers. Let α(s), with 0 < s < a be a regular curve
parametrized by arc length. Assume that X : (0, a)× (0, b) −→ R3 given by
X(s, t) = α(s) + tα̇(s) is a regular patch. (Dot is used to represent derivative with respect to
s.) Prove that the curvature of α is different from zero for each s ∈ (0, a).

Proof. Seeing that Xs(s, t) = α̇(s) + tα̈(s) and Xt(s, t) = α̇(s) we arrive at the equation

tα̈(s) = Xs(s, t)−Xt(s, t)

Now since X(s, t) is a regular surface patch we have Xs and Xt are linearly independent for all
s, t in our domain. Thus Xs(s, t) − Xt(s, t) 6= 0̄ where 0̄ is the zero vector in R3. Taking the
norm of both sides of our equation above we have

t|α̈(s)| = |Xs(s, t)−Xt(s, t)| 6= 0

As this holds for all s, t in our domain we conclude the curvature of α is different from zero for
each s ∈ (0, a)

κ(s) = |α̈(s)| 6= 0

�



Problem 5. Give a parametrization of a Möbius strip as the one shown below that is a portion
of a ruled surface (it is exhausted by straight segments). Use Mathematica to produce the graph
using your parametrization.

Solution. A ruled surface is of the form X(s, t) = α(t) + sβ(t) with t ∈ I and s ∈ (−∞,∞).
Let

α(t) = (cos t, 0, sin t)

with t ∈ [0, 2π] be the unit circle in the xz-plane. Computing the T,N,B frame

T (t) =
α′

|α′|
= (− sin t, 0, cos t)

B(t) =
α′ × α′′

|α′ × α′′|
= (0,−1, 0)

N(t) = B × T = (− cos t, 0,− sin t)

Using the plane spanned by N and B we define

β(t) = cos(
t

2
)N(t) + sin(

t

2
)B(t)

Note the t
2

is what gives us the half twist in the Möbius strip. Thus the Möbius strip can be
parametrized by

X(s, t) = α(t) + sβ(t)

= (cos t, 0, sin t) + s

[
cos(

t

2
)N(t) + sin(

t

2
)B(t)

]
as seen in the image below for t ∈ [0, 2π], s ∈ [−.4, .4].

Figure 3: The Möbius strip showing the curve α(t) in purple and the T,N,B frame at a point.



Problem 6. A surface M is the trace of the regular patch X : R2 −→ R3 given by

X(u, v) = (u2 − 2v, u, u+ v2).

Compute the coefficients of the first fundamental form of M .

Solution. The coefficients of the first fundamental form are given below after showing the
necessary computations.

X(u, v) = (u2 − 2v, u, u+ v2)

Xu(u, v) = (2u, 1, 1)

Xv(u, v) = (−2, 0, 2v)

E(u, v) = Xu(u, v) ·Xu(u, v) = 4u2 + 2

F (u, v) = Xu(u, v) ·Xv(u, v) = −4u+ 2v

G(u, v) = Xv(u, v) ·Xv(u, v) = 4 + 4v2

The coefficients are E,F,G. See images of the surface below.



Problem 7. Consider the surface M that is the trace of the patch X : R2 −→ R3 given by

X(u, v) =
(
u2, u− v, u+ v

)
.

Find the principal curvatures of the surface M at the point (0,−1, 1).

Solution. To compute the principal curvatures of the surface at X(0, 1) = (0,−1, 1) we solve
the quadratic equation det(II − λI) = 0 for λ where I and II are the matrices of the first and
second fundamental form. We begin by carrying out the necessary computations.

X =
(
u2, u− v, u+ v

)
Xu = (2u, 1, 1)

Xv = (0,−1, 1)

Xuu = (2, 0, 0)

Xuv = (0, 0, 0)

Xvv = (0, 0, 0)

η =
Xu ×Xv

|Xu ×Xv|
=

1√
2u2 + 1

(1,−u,−u)

E = Xu ·Xu = 4u2 + 2

F = Xu ·Xv = 0

G = Xv ·Xv = 2

L = Xuu · η =
2√

2u2 + 1

M = Xuv · η = 0

N = Xvv · η = 0

Evaluating at the point u = 0, v = 1 we have

I =

(
E F
F G

)
=

(
2 0
0 2

)

II =

(
L M
M N

)
=

(
2 0
0 0

)
This gives us

0 = det(II − λI) =

∣∣∣∣2− 2λ 0
0 −2λ

∣∣∣∣ = 4λ(λ− 1)

Therefore the principal curvatures at the point X(0, 1) = (0,−1, 1) are κ1 = 0, κ2 = 1.



Figure 4: The surface from Problem 7 showing the lines of curvature at the point (0,−1, 1)



Problem 8. The pictures below show a helicoidal ramp enclosed in a cylinder of radius one

from different perspectives. The ramp can be parametrized by X(u, v) = (u cos v, u sin v,
v

4
)

with 0.25 < u < 1, 0 < v < 2π. Find a double integral that represents the area of the ramp.
You do not need to compute the integral but you must simplify the integrand (the expression
inside the integral) as much as possible.

Solution. We compute the coefficients of the first fundamental form E = Xu ·Xu, F = Xu ·Xv,
and G = Xv ·Xv where Xu, Xv are the partial derivatives with respect to u and v. The area

of a regular patch is given by

∫
Ω

√
EG− F 2 du dv.

X = (u cos v, u sin v,
v

4
) E = 1

Xu = (cos v, sin v, 0) F = 0

Xv = (−u sin v, u cos v,
1

4
) G = u2 +

1

16

The area is given by

1

4

∫ 2π

0

∫ 1

1
4

√
16u2 + 1 du dv ≈ 3.19884


