
Public Key Cryptography

Carman S. Cater

Carman S. Cater Public Key Cryptography 1 / 48

Outline

1 Introduction to Cryptography

2 Number Theory Background

3 Diffie-Hellman Key Exchange (1976)

4 Elgamal Encryption Scheme (1985)

5 RSA Encryption - Rivest, Shamir, Adleman (1977)

6 Closing Remarks

Carman S. Cater Public Key Cryptography 2 / 48

Introduction to Cryptography

History

Encryption
I Symmetric Key
I Public Key

Figure: Made using wordart.com

Carman S. Cater Public Key Cryptography 3 / 48

wordart.com

History
Early Days

I 1500 BC - Clay tablets in Mesopotamia meant to encrypt information

I 500 BC - Substitution chiphers being used by Hebrew scholars
I 100 BC - Caesar Cipher - Shift each letter a fixed number of positions

in the alphabet
I AD 800 - Al-Kindi, an Arab mathematician used frequency analysis to

break ciphers

Figure: Al-Kindi Figure: ROT13 (Type of Caesar Cipher)

Carman S. Cater Public Key Cryptography 4 / 48

History
Early Days

I 1500 BC - Clay tablets in Mesopotamia meant to encrypt information
I 500 BC - Substitution chiphers being used by Hebrew scholars

I 100 BC - Caesar Cipher - Shift each letter a fixed number of positions
in the alphabet

I AD 800 - Al-Kindi, an Arab mathematician used frequency analysis to
break ciphers

Figure: Al-Kindi Figure: ROT13 (Type of Caesar Cipher)

Carman S. Cater Public Key Cryptography 4 / 48

History
Early Days

I 1500 BC - Clay tablets in Mesopotamia meant to encrypt information
I 500 BC - Substitution chiphers being used by Hebrew scholars
I 100 BC - Caesar Cipher - Shift each letter a fixed number of positions

in the alphabet

I AD 800 - Al-Kindi, an Arab mathematician used frequency analysis to
break ciphers

Figure: Al-Kindi

Figure: ROT13 (Type of Caesar Cipher)

Carman S. Cater Public Key Cryptography 4 / 48

History
Early Days

I 1500 BC - Clay tablets in Mesopotamia meant to encrypt information
I 500 BC - Substitution chiphers being used by Hebrew scholars
I 100 BC - Caesar Cipher - Shift each letter a fixed number of positions

in the alphabet
I AD 800 - Al-Kindi, an Arab mathematician used frequency analysis to

break ciphers

Figure: Al-Kindi Figure: ROT13 (Type of Caesar Cipher)

Carman S. Cater Public Key Cryptography 4 / 48

History (cont.)

Later Advancements
I 1917 - M-94 developed by the US Army

I World War II - The German Army used an electromechanical rotor
machine known as the Enigma

Figure: M-94

Figure: Enigma

Carman S. Cater Public Key Cryptography 5 / 48

History (cont.)

Later Advancements
I 1917 - M-94 developed by the US Army
I World War II - The German Army used an electromechanical rotor

machine known as the Enigma

Figure: M-94 Figure: Enigma

Carman S. Cater Public Key Cryptography 5 / 48

History (cont.)

Recent Developents
I 1970’s - Now

F The Internet for commercial purposes created a need for encryption
standards

F Many new symmetric schemes as well as the discovery of public key
algorithms based on one-way functions

F Popular encryption schemes used today include AES, Diffie-Hellman,
RSA, Elliptic curve, and many more

Carman S. Cater Public Key Cryptography 6 / 48

History (cont.)

Recent Developents
I 1970’s - Now

F The Internet for commercial purposes created a need for encryption
standards

F Many new symmetric schemes as well as the discovery of public key
algorithms based on one-way functions

F Popular encryption schemes used today include AES, Diffie-Hellman,
RSA, Elliptic curve, and many more

Carman S. Cater Public Key Cryptography 6 / 48

History (cont.)

Recent Developents
I 1970’s - Now

F The Internet for commercial purposes created a need for encryption
standards

F Many new symmetric schemes as well as the discovery of public key
algorithms based on one-way functions

F Popular encryption schemes used today include AES, Diffie-Hellman,
RSA, Elliptic curve, and many more

Carman S. Cater Public Key Cryptography 6 / 48

History (cont.)

Recent Developents
I 1970’s - Now

F The Internet for commercial purposes created a need for encryption
standards

F Many new symmetric schemes as well as the discovery of public key
algorithms based on one-way functions

F Popular encryption schemes used today include AES, Diffie-Hellman,
RSA, Elliptic curve, and many more

Carman S. Cater Public Key Cryptography 6 / 48

Encryption

Encryption is the process of encoding information. Start with plaintext,
create ciphertext.

Symmetric Key Encryption (Single private key)

I Caesar Cipher - Left/Right shift the alphabet by some amount
F For example, suppose the word ”cat” maps to ”ecu”. Key = right 3
F c = α + k (mod 26) for some letter α and key k

I XOR Cipher - Take message m in binary and random bit string k of
equal length. Perform XOR operation

F c = m ⊕ k = 0111 1001 1100⊕ 1010 0111 0011 = 1101 1110 1111
F m = c ⊕ k = 1101 1110 1111⊕ 1010 0111 0011 = 0111 1001 1100

I The modern standard is Advanced Encryption Standard (AES)
published in 1988

F Became the U.S. federal government standard in 2002 and is approved
by the NSA

Carman S. Cater Public Key Cryptography 7 / 48

Encryption

Encryption is the process of encoding information. Start with plaintext,
create ciphertext.

Symmetric Key Encryption (Single private key)
I Caesar Cipher - Left/Right shift the alphabet by some amount

F For example, suppose the word ”cat” maps to ”ecu”. Key = right 3
F c = α + k (mod 26) for some letter α and key k

I XOR Cipher - Take message m in binary and random bit string k of
equal length. Perform XOR operation

F c = m ⊕ k = 0111 1001 1100⊕ 1010 0111 0011 = 1101 1110 1111
F m = c ⊕ k = 1101 1110 1111⊕ 1010 0111 0011 = 0111 1001 1100

I The modern standard is Advanced Encryption Standard (AES)
published in 1988

F Became the U.S. federal government standard in 2002 and is approved
by the NSA

Carman S. Cater Public Key Cryptography 7 / 48

Encryption

Encryption is the process of encoding information. Start with plaintext,
create ciphertext.

Symmetric Key Encryption (Single private key)
I Caesar Cipher - Left/Right shift the alphabet by some amount

F For example, suppose the word ”cat” maps to ”ecu”. Key = right 3
F c = α + k (mod 26) for some letter α and key k

I XOR Cipher - Take message m in binary and random bit string k of
equal length. Perform XOR operation

F c = m ⊕ k = 0111 1001 1100⊕ 1010 0111 0011 = 1101 1110 1111
F m = c ⊕ k = 1101 1110 1111⊕ 1010 0111 0011 = 0111 1001 1100

I The modern standard is Advanced Encryption Standard (AES)
published in 1988

F Became the U.S. federal government standard in 2002 and is approved
by the NSA

Carman S. Cater Public Key Cryptography 7 / 48

Encryption

Encryption is the process of encoding information. Start with plaintext,
create ciphertext.

Symmetric Key Encryption (Single private key)
I Caesar Cipher - Left/Right shift the alphabet by some amount

F For example, suppose the word ”cat” maps to ”ecu”. Key = right 3
F c = α + k (mod 26) for some letter α and key k

I XOR Cipher - Take message m in binary and random bit string k of
equal length. Perform XOR operation

F c = m ⊕ k = 0111 1001 1100⊕ 1010 0111 0011 = 1101 1110 1111
F m = c ⊕ k = 1101 1110 1111⊕ 1010 0111 0011 = 0111 1001 1100

I The modern standard is Advanced Encryption Standard (AES)
published in 1988

F Became the U.S. federal government standard in 2002 and is approved
by the NSA

Carman S. Cater Public Key Cryptography 7 / 48

Encryption (cont.)

The nontrivial issue with symmetric algorithms is the transmission of the
private key over a public channel.

Public-Key Encryption (Public/Private Key Pair)
I Very recent development, beginning in the 1970’s
I Popular public-key algorithms include

F Diffie-Hellman Key Exchange
F Elgamal Encryption Scheme
F RSA Encryption

Carman S. Cater Public Key Cryptography 8 / 48

Encryption (cont.)

The nontrivial issue with symmetric algorithms is the transmission of the
private key over a public channel.

Public-Key Encryption (Public/Private Key Pair)
I Very recent development, beginning in the 1970’s
I Popular public-key algorithms include

F Diffie-Hellman Key Exchange
F Elgamal Encryption Scheme
F RSA Encryption

Carman S. Cater Public Key Cryptography 8 / 48

Number Theory Background

Definition

(The Ring of Integers Modulo n). This ring is denoted by Zn and is the
quotient

Z/nZ = {0, 1, 2, 3, ..., n − 1}

The operations are regular addition and multiplication reduced modulo n.

For our purposes, we will be using the multiplicative group of units

Z∗p = {1, 2, ..., p − 1}

for p prime. Elgamal and RSA require the existence of inverses.

Carman S. Cater Public Key Cryptography 9 / 48

Number Theory Background

Definition

(The Ring of Integers Modulo n). This ring is denoted by Zn and is the
quotient

Z/nZ = {0, 1, 2, 3, ..., n − 1}

The operations are regular addition and multiplication reduced modulo n.

For our purposes, we will be using the multiplicative group of units

Z∗p = {1, 2, ..., p − 1}

for p prime. Elgamal and RSA require the existence of inverses.

Carman S. Cater Public Key Cryptography 9 / 48

Number Theory Background (cont.)

Definition
(Euler’s Totient Function). Given some n ∈ N how many natural numbers in the range
[1, n] are relatively prime to n? For n ∈ N, let

ϕ(n) = #{a ∈ N | 1 ≤ a < n and gcd(a, n) = 1}

There is a nice formula for computing ϕ(n) when the prime factorization of n is known.
Suppose

n = pα1
1 pα2

2 · · · p
αm
m

is the prime factorization of n, with each prime factor pi distinct from the others. Then

ϕ(n) = Πm
i=1(pαi

i − pαi−1
i)

Special Case
Now let’s look at the special case when n ∈ N and n = p · q for p, q prime. This gives us

φ(n) = (p − 1)(q − 1)

This will be of particular use when doing the RSA algorithm.

Carman S. Cater Public Key Cryptography 10 / 48

Number Theory Background (cont.)

Definition
(Euler’s Totient Function). Given some n ∈ N how many natural numbers in the range
[1, n] are relatively prime to n? For n ∈ N, let

ϕ(n) = #{a ∈ N | 1 ≤ a < n and gcd(a, n) = 1}

There is a nice formula for computing ϕ(n) when the prime factorization of n is known.
Suppose

n = pα1
1 pα2

2 · · · p
αm
m

is the prime factorization of n, with each prime factor pi distinct from the others. Then

ϕ(n) = Πm
i=1(pαi

i − pαi−1
i)

Special Case
Now let’s look at the special case when n ∈ N and n = p · q for p, q prime. This gives us

φ(n) = (p − 1)(q − 1)

This will be of particular use when doing the RSA algorithm.

Carman S. Cater Public Key Cryptography 10 / 48

Number Theory Background (cont.)

Definition
(Euler’s Totient Function). Given some n ∈ N how many natural numbers in the range
[1, n] are relatively prime to n? For n ∈ N, let

ϕ(n) = #{a ∈ N | 1 ≤ a < n and gcd(a, n) = 1}

There is a nice formula for computing ϕ(n) when the prime factorization of n is known.
Suppose

n = pα1
1 pα2

2 · · · p
αm
m

is the prime factorization of n, with each prime factor pi distinct from the others. Then

ϕ(n) = Πm
i=1(pαi

i − pαi−1
i)

Special Case
Now let’s look at the special case when n ∈ N and n = p · q for p, q prime. This gives us

φ(n) = (p − 1)(q − 1)

This will be of particular use when doing the RSA algorithm.

Carman S. Cater Public Key Cryptography 10 / 48

Number Theory Background (cont.)

Proposition

If gcd(a, n) = 1, then the equation ax ≡ b (mod n) has a solution, and that solution is
unique modulo n.

Proof.
By Bezout’s Identity there exist x and y such that ax + ny = gcd(a, n) = 1. Looking at
the equation modulo n we get ax ≡ 1 (mod n) Multiplying on both sides by b gives us
our desired result

a(xb) ≡ b (mod n)

Remark: For the RSA we will need to solve the equation ax ≡ 1 (mod p).

Carman S. Cater Public Key Cryptography 11 / 48

Number Theory Background (cont.)

Proposition

If gcd(a, n) = 1, then the equation ax ≡ b (mod n) has a solution, and that solution is
unique modulo n.

Proof.
By Bezout’s Identity there exist x and y such that ax + ny = gcd(a, n) = 1. Looking at
the equation modulo n we get ax ≡ 1 (mod n) Multiplying on both sides by b gives us
our desired result

a(xb) ≡ b (mod n)

Remark: For the RSA we will need to solve the equation ax ≡ 1 (mod p).

Carman S. Cater Public Key Cryptography 11 / 48

Number Theory Background (cont.)

Proposition

If gcd(a, n) = 1, then the equation ax ≡ b (mod n) has a solution, and that solution is
unique modulo n.

Proof.
By Bezout’s Identity there exist x and y such that ax + ny = gcd(a, n) = 1. Looking at
the equation modulo n we get ax ≡ 1 (mod n) Multiplying on both sides by b gives us
our desired result

a(xb) ≡ b (mod n)

Remark: For the RSA we will need to solve the equation ax ≡ 1 (mod p).

Carman S. Cater Public Key Cryptography 11 / 48

Number Theory Background (cont.)

Theorem

(Euler’s Theorem). If gcd(x , n) = 1, then

xφ(n) ≡ 1 (mod n)

Proof.

Using machinery from abstract algebra, we can identify x as being x ∈ (Z/nZ)∗

and since
#(Z/nZ)∗ = φ(n)

we can employ Lagrange’s Theorem. By Lagrange’s Theorem, the order of x
divides φ(n). Say φ(n) =| x | ∗k for some k ∈ Z. Then

xφ(n) ≡ x |x|∗k ≡ 1 (mod n)

which is the desired result.

Note: Euler’s Theorem is used in the proof of the RSA encryption algorithm.

Carman S. Cater Public Key Cryptography 12 / 48

Number Theory Background (cont.)

Theorem

(Euler’s Theorem). If gcd(x , n) = 1, then

xφ(n) ≡ 1 (mod n)

Proof.

Using machinery from abstract algebra, we can identify x as being x ∈ (Z/nZ)∗

and since
#(Z/nZ)∗ = φ(n)

we can employ Lagrange’s Theorem. By Lagrange’s Theorem, the order of x
divides φ(n). Say φ(n) =| x | ∗k for some k ∈ Z. Then

xφ(n) ≡ x |x|∗k ≡ 1 (mod n)

which is the desired result.

Note: Euler’s Theorem is used in the proof of the RSA encryption algorithm.

Carman S. Cater Public Key Cryptography 12 / 48

Diffie-Hellman Key Exchange (1976)

1 About DHKE
2 How Does DHKE Work?

I Example with Small Numbers
I Example in SageMath

3 How to Break DHKE
4 Discrete Logarithm Problem

I Attacks Against the DLP

5 Closing Remarks on DHKE

Figure: Whitfield Diffie and Martin
Hellman Image: https://news.stanford.edu/news/

2016/march/images/16185-turingtwo_news.jpg

Carman S. Cater Public Key Cryptography 13 / 48

https://news.stanford.edu/news/2016/march/images/16185-turingtwo_news.jpg
https://news.stanford.edu/news/2016/march/images/16185-turingtwo_news.jpg

About DHKE

Discovered in 1976 by Whitfield Diffie and Martin Hellman. This
marks the beginning of asymmetric cryptography

Allows two parties to derive a shared secret key over a public channel

Operations initially performed in Z∗p
Recent Diffie-Hellman implementations use Elliptic Curves

Used in cryptographic protocols such as Secure Shell (SSH),
Transport Layer Security (TLS), and Internet Protocol Security
(IPSec)

Carman S. Cater Public Key Cryptography 14 / 48

About DHKE

Discovered in 1976 by Whitfield Diffie and Martin Hellman. This
marks the beginning of asymmetric cryptography

Allows two parties to derive a shared secret key over a public channel

Operations initially performed in Z∗p
Recent Diffie-Hellman implementations use Elliptic Curves

Used in cryptographic protocols such as Secure Shell (SSH),
Transport Layer Security (TLS), and Internet Protocol Security
(IPSec)

Carman S. Cater Public Key Cryptography 14 / 48

About DHKE

Discovered in 1976 by Whitfield Diffie and Martin Hellman. This
marks the beginning of asymmetric cryptography

Allows two parties to derive a shared secret key over a public channel

Operations initially performed in Z∗p

Recent Diffie-Hellman implementations use Elliptic Curves

Used in cryptographic protocols such as Secure Shell (SSH),
Transport Layer Security (TLS), and Internet Protocol Security
(IPSec)

Carman S. Cater Public Key Cryptography 14 / 48

About DHKE

Discovered in 1976 by Whitfield Diffie and Martin Hellman. This
marks the beginning of asymmetric cryptography

Allows two parties to derive a shared secret key over a public channel

Operations initially performed in Z∗p
Recent Diffie-Hellman implementations use Elliptic Curves

Used in cryptographic protocols such as Secure Shell (SSH),
Transport Layer Security (TLS), and Internet Protocol Security
(IPSec)

Carman S. Cater Public Key Cryptography 14 / 48

About DHKE

Discovered in 1976 by Whitfield Diffie and Martin Hellman. This
marks the beginning of asymmetric cryptography

Allows two parties to derive a shared secret key over a public channel

Operations initially performed in Z∗p
Recent Diffie-Hellman implementations use Elliptic Curves

Used in cryptographic protocols such as Secure Shell (SSH),
Transport Layer Security (TLS), and Internet Protocol Security
(IPSec)

Carman S. Cater Public Key Cryptography 14 / 48

How Does DHKE Work?

Procedure (Public = {p, g ,A,B}, Private = {n,m})
1 Alice and bob agree publicly on a large prime number p and a

primitive element g such that 1 < g < p

2 Alice secretly chooses an integer n

3 Bob secretly chooses an integer m

4 Alice computes A = gn (mod p) and Bob computes B = gm (mod
p). They then tell each other their results

5 The shared secret key is

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

Proof.

The correctness of the algorithm is fairly obvious. Commutativity in Z∗p
follows from commutativity in Z.

Carman S. Cater Public Key Cryptography 15 / 48

How Does DHKE Work?

Procedure (Public = {p, g ,A,B}, Private = {n,m})
1 Alice and bob agree publicly on a large prime number p and a

primitive element g such that 1 < g < p

2 Alice secretly chooses an integer n

3 Bob secretly chooses an integer m

4 Alice computes A = gn (mod p) and Bob computes B = gm (mod
p). They then tell each other their results

5 The shared secret key is

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

Proof.

The correctness of the algorithm is fairly obvious. Commutativity in Z∗p
follows from commutativity in Z.

Carman S. Cater Public Key Cryptography 15 / 48

How Does DHKE Work?

Procedure (Public = {p, g ,A,B}, Private = {n,m})
1 Alice and bob agree publicly on a large prime number p and a

primitive element g such that 1 < g < p

2 Alice secretly chooses an integer n

3 Bob secretly chooses an integer m

4 Alice computes A = gn (mod p) and Bob computes B = gm (mod
p). They then tell each other their results

5 The shared secret key is

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

Proof.

The correctness of the algorithm is fairly obvious. Commutativity in Z∗p
follows from commutativity in Z.

Carman S. Cater Public Key Cryptography 15 / 48

How Does DHKE Work?

Procedure (Public = {p, g ,A,B}, Private = {n,m})
1 Alice and bob agree publicly on a large prime number p and a

primitive element g such that 1 < g < p

2 Alice secretly chooses an integer n

3 Bob secretly chooses an integer m

4 Alice computes A = gn (mod p) and Bob computes B = gm (mod
p). They then tell each other their results

5 The shared secret key is

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

Proof.

The correctness of the algorithm is fairly obvious. Commutativity in Z∗p
follows from commutativity in Z.

Carman S. Cater Public Key Cryptography 15 / 48

How Does DHKE Work?

Procedure (Public = {p, g ,A,B}, Private = {n,m})
1 Alice and bob agree publicly on a large prime number p and a

primitive element g such that 1 < g < p

2 Alice secretly chooses an integer n

3 Bob secretly chooses an integer m

4 Alice computes A = gn (mod p) and Bob computes B = gm (mod
p). They then tell each other their results

5 The shared secret key is

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

Proof.

The correctness of the algorithm is fairly obvious. Commutativity in Z∗p
follows from commutativity in Z.

Carman S. Cater Public Key Cryptography 15 / 48

Example of DHKE with Small Numbers

Example

1 Take the prime p = 97, and primitive element g = 5

2 Alice randomly chooses n = 31

3 Bob randomly chooses m = 95

4 Alice computes gn ≡ 531 ≡ 7 (mod 97)

5 Bob computes gm ≡ 595 ≡ 39 (mod 97)

6 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 14 (mod 97)

Note: We take g to be a primitive element so that when g is
exponentiated, it can take on any value in the group Z∗p.

Carman S. Cater Public Key Cryptography 16 / 48

Example of DHKE with Small Numbers

Example

1 Take the prime p = 97, and primitive element g = 5

2 Alice randomly chooses n = 31

3 Bob randomly chooses m = 95

4 Alice computes gn ≡ 531 ≡ 7 (mod 97)

5 Bob computes gm ≡ 595 ≡ 39 (mod 97)

6 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 14 (mod 97)

Note: We take g to be a primitive element so that when g is
exponentiated, it can take on any value in the group Z∗p.

Carman S. Cater Public Key Cryptography 16 / 48

Example of DHKE with Small Numbers

Example

1 Take the prime p = 97, and primitive element g = 5

2 Alice randomly chooses n = 31

3 Bob randomly chooses m = 95

4 Alice computes gn ≡ 531 ≡ 7 (mod 97)

5 Bob computes gm ≡ 595 ≡ 39 (mod 97)

6 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 14 (mod 97)

Note: We take g to be a primitive element so that when g is
exponentiated, it can take on any value in the group Z∗p.

Carman S. Cater Public Key Cryptography 16 / 48

Example of DHKE with Small Numbers

Example

1 Take the prime p = 97, and primitive element g = 5

2 Alice randomly chooses n = 31

3 Bob randomly chooses m = 95

4 Alice computes gn ≡ 531 ≡ 7 (mod 97)

5 Bob computes gm ≡ 595 ≡ 39 (mod 97)

6 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 14 (mod 97)

Note: We take g to be a primitive element so that when g is
exponentiated, it can take on any value in the group Z∗p.

Carman S. Cater Public Key Cryptography 16 / 48

Example of DHKE in SageMath

Remember, {p, g ,A,B} below are public, while {n,m} are private.

In [96]: bitSize = 2^20 # The bit size of p

In [97]: p = next_prime(ZZ.random_element(1, bitSize)) ; p # This is the modulus (public)

Out[97]: 136811

In [98]: g = Integers(p).multiplicative_generator(); g # Primitive element (public)

Out[98]: 2

In [99]: g.multiplicative_order()

Out[99]: 136810

In [100]: n = ZZ.random_element(1, p) ; n # This is Alice’s Key (private)

Out[100]: 82089

In [101]: m = ZZ.random_element(1, p) ; m # This is Bob’s key (private)

Out[101]: 90529

In [102]: A = Mod(g^n, p); A # Alice sends this to Bob (public)

Out[102]: 132163

In [103]: B = Mod(g^m, p); B # Bob sends this to Alice (public)

Out[103]: 135216

In [104]: Mod((g^n)^m, p) # This is the shared secret key

Out[104]: 14437

In [105]: Mod((g^m)^n, p) # This is the shared secret key

Out[105]: 14437

Let’s looks at a live demo with a larger bit length.

Carman S. Cater Public Key Cryptography 17 / 48

How to Break DHKE

Recall the DHKE procedure

Procedure (Public = {p, g ,A,B}, Private = {n,m})
1 Alice and bob agree publicly on a large prime number p and a primitive element g

such that 1 < g < p

2 Alice secretly chooses an integer n

3 Bob secretly chooses an integer m

4 Alice computes A = gn (mod p) and Bob computes B = gm (mod p). They then
tell each other their results

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

If we can find a way to compute either Alice’s or Bob’s secret keys n or m,
then we can simply compute the secret key by exponentiating B or A
respectively.

Carman S. Cater Public Key Cryptography 18 / 48

Discrete Logarithm Problem

Discrete Log Problem (DLP)

Let G be a finite group such as Z∗p. Given b ∈ G and a power a of b, find
a positive integer n such that bn ≡ a (mod p)

Example

Take Z∗47 and α = 5 such that | α |= 46 so that α is a primitive root. Find
the positive integer x such that 5x ≡ 41 (mod 47)

Note: If we can solve the DLP, then we can easily break the DHKE. There
are several classical (non quantum) algorithms we mention below.

Carman S. Cater Public Key Cryptography 19 / 48

Discrete Logarithm Problem

Discrete Log Problem (DLP)

Let G be a finite group such as Z∗p. Given b ∈ G and a power a of b, find
a positive integer n such that bn ≡ a (mod p)

Example

Take Z∗47 and α = 5 such that | α |= 46 so that α is a primitive root. Find
the positive integer x such that 5x ≡ 41 (mod 47)

Note: If we can solve the DLP, then we can easily break the DHKE. There
are several classical (non quantum) algorithms we mention below.

Carman S. Cater Public Key Cryptography 19 / 48

Discrete Logarithm Problem

Discrete Log Problem (DLP)

Let G be a finite group such as Z∗p. Given b ∈ G and a power a of b, find
a positive integer n such that bn ≡ a (mod p)

Example

Take Z∗47 and α = 5 such that | α |= 46 so that α is a primitive root. Find
the positive integer x such that 5x ≡ 41 (mod 47)

Note: If we can solve the DLP, then we can easily break the DHKE. There
are several classical (non quantum) algorithms we mention below.

Carman S. Cater Public Key Cryptography 19 / 48

Attacks Against the DLP

Brute-Force Search
I Simply compute powers and hope for a match.
I | G |≥ 280 to be infeasible. Greater than 24 decimal digits

Shanks’ Baby-Step Giant-Step Method
I Time-memory tradeoff. Reduces the time at the cost of extra storage.
I | G |≥ 2160 to be infeasible. Greater than 48 decimal digits

Pollard’s Rho Method for Logarithms
I Currently the best known classical algorithm for computing discrete log

in elliptic curve groups
I | G |≥ 2160 to be infeasible

Carman S. Cater Public Key Cryptography 20 / 48

Attacks Against the DLP

Brute-Force Search
I Simply compute powers and hope for a match.
I | G |≥ 280 to be infeasible. Greater than 24 decimal digits

Shanks’ Baby-Step Giant-Step Method
I Time-memory tradeoff. Reduces the time at the cost of extra storage.
I | G |≥ 2160 to be infeasible. Greater than 48 decimal digits

Pollard’s Rho Method for Logarithms
I Currently the best known classical algorithm for computing discrete log

in elliptic curve groups
I | G |≥ 2160 to be infeasible

Carman S. Cater Public Key Cryptography 20 / 48

Attacks Against the DLP

Brute-Force Search
I Simply compute powers and hope for a match.
I | G |≥ 280 to be infeasible. Greater than 24 decimal digits

Shanks’ Baby-Step Giant-Step Method
I Time-memory tradeoff. Reduces the time at the cost of extra storage.
I | G |≥ 2160 to be infeasible. Greater than 48 decimal digits

Pollard’s Rho Method for Logarithms
I Currently the best known classical algorithm for computing discrete log

in elliptic curve groups
I | G |≥ 2160 to be infeasible

Carman S. Cater Public Key Cryptography 20 / 48

Attacks Against the DLP cont.

Pohlig-Hellman Algorithm
I Based on the Chinese Remainder Theorem, it relies on the prime

factorization of | G |
I Group order must have prime factor ≥ 2160

Index Calculus Method
I Exploits properties of Z∗p, while the previous methods were independent

of the underlying group
I | G |≥ 21024 to be infeasible. Greater than 308 decimal digits

Man in the Middle Attack
I Eve intercepts Alice’s gn and Bob’s gm

I Eve sends Alice and Bob g t and now acts as the middleman
I The two private keys are now gn·t and gm·t using Eve’s integer t
I From now on, Eve is able to intercept, decrypt, and change the

messages in subtle ways

List of Records for solving the DLP
https://en.wikipedia.org/wiki/Discrete_logarithm_records

Carman S. Cater Public Key Cryptography 21 / 48

https://en.wikipedia.org/wiki/Discrete_logarithm_records

Attacks Against the DLP cont.

Pohlig-Hellman Algorithm
I Based on the Chinese Remainder Theorem, it relies on the prime

factorization of | G |
I Group order must have prime factor ≥ 2160

Index Calculus Method
I Exploits properties of Z∗p, while the previous methods were independent

of the underlying group
I | G |≥ 21024 to be infeasible. Greater than 308 decimal digits

Man in the Middle Attack
I Eve intercepts Alice’s gn and Bob’s gm

I Eve sends Alice and Bob g t and now acts as the middleman
I The two private keys are now gn·t and gm·t using Eve’s integer t
I From now on, Eve is able to intercept, decrypt, and change the

messages in subtle ways

List of Records for solving the DLP
https://en.wikipedia.org/wiki/Discrete_logarithm_records

Carman S. Cater Public Key Cryptography 21 / 48

https://en.wikipedia.org/wiki/Discrete_logarithm_records

Attacks Against the DLP cont.

Pohlig-Hellman Algorithm
I Based on the Chinese Remainder Theorem, it relies on the prime

factorization of | G |
I Group order must have prime factor ≥ 2160

Index Calculus Method
I Exploits properties of Z∗p, while the previous methods were independent

of the underlying group
I | G |≥ 21024 to be infeasible. Greater than 308 decimal digits

Man in the Middle Attack
I Eve intercepts Alice’s gn and Bob’s gm

I Eve sends Alice and Bob g t and now acts as the middleman
I The two private keys are now gn·t and gm·t using Eve’s integer t
I From now on, Eve is able to intercept, decrypt, and change the

messages in subtle ways

List of Records for solving the DLP
https://en.wikipedia.org/wiki/Discrete_logarithm_records

Carman S. Cater Public Key Cryptography 21 / 48

https://en.wikipedia.org/wiki/Discrete_logarithm_records

Closing Remarks on DHKE

Diffie-Hellman is a widely used protocol for key exchange, often then
used in conjunction with symmetric algorithms

It relies on the ”difficulty” of the discrete logarithm problem.
Quantum computers may pose a threat

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

Carman S. Cater Public Key Cryptography 22 / 48

Closing Remarks on DHKE

Diffie-Hellman is a widely used protocol for key exchange, often then
used in conjunction with symmetric algorithms

It relies on the ”difficulty” of the discrete logarithm problem.
Quantum computers may pose a threat

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

Carman S. Cater Public Key Cryptography 22 / 48

Closing Remarks on DHKE

Diffie-Hellman is a widely used protocol for key exchange, often then
used in conjunction with symmetric algorithms

It relies on the ”difficulty” of the discrete logarithm problem.
Quantum computers may pose a threat

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

Carman S. Cater Public Key Cryptography 22 / 48

Elgamal Encryption Scheme (1985)

About Elgamal

How Does Elgamal Work?
I Example by Hand
I Example using SageMath

Security of Elgamal

Closing Remarks on Elgamal

Figure: Taher Elgamal Image:

https://evolutionequity.com/team/taher-elgamal

Carman S. Cater Public Key Cryptography 23 / 48

https://evolutionequity.com/team/taher-elgamal

About Elgamal

An extension of Diffie-Hellman proposed in 1985 by Taher Elgamal

Is used to encrypt a message m as ciphertext

Security relies on the Discrete Log Problem

Carman S. Cater Public Key Cryptography 24 / 48

About Elgamal

An extension of Diffie-Hellman proposed in 1985 by Taher Elgamal

Is used to encrypt a message m as ciphertext

Security relies on the Discrete Log Problem

Carman S. Cater Public Key Cryptography 24 / 48

About Elgamal

An extension of Diffie-Hellman proposed in 1985 by Taher Elgamal

Is used to encrypt a message m as ciphertext

Security relies on the Discrete Log Problem

Carman S. Cater Public Key Cryptography 24 / 48

How does Elgamal Work?

Procedure (Public = {p, g , gn, gm}, Private = {n,m})
1 Perform the Diffie-Hellman Key Exchange and arrive at the shared secret key

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

2 Alice converts her plaintext message m into an element of Z∗
p and computes

c ≡ m · s (mod p)

She sends the ciphertext c to Bob

3 Bob computes the inverse of s

4 Bob recovers the plaintext message by computing

c · s−1 ≡ (m · s) · s−1 ≡ m (mod p)

Proof.
The proof is essentially baked into the procedure. We rely on the existence of s−1, which exists
because s is a power of g and g is primitive.

Carman S. Cater Public Key Cryptography 25 / 48

How does Elgamal Work?

Procedure (Public = {p, g , gn, gm}, Private = {n,m})
1 Perform the Diffie-Hellman Key Exchange and arrive at the shared secret key

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

2 Alice converts her plaintext message m into an element of Z∗
p and computes

c ≡ m · s (mod p)

She sends the ciphertext c to Bob

3 Bob computes the inverse of s

4 Bob recovers the plaintext message by computing

c · s−1 ≡ (m · s) · s−1 ≡ m (mod p)

Proof.
The proof is essentially baked into the procedure. We rely on the existence of s−1, which exists
because s is a power of g and g is primitive.

Carman S. Cater Public Key Cryptography 25 / 48

How does Elgamal Work?

Procedure (Public = {p, g , gn, gm}, Private = {n,m})
1 Perform the Diffie-Hellman Key Exchange and arrive at the shared secret key

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

2 Alice converts her plaintext message m into an element of Z∗
p and computes

c ≡ m · s (mod p)

She sends the ciphertext c to Bob

3 Bob computes the inverse of s

4 Bob recovers the plaintext message by computing

c · s−1 ≡ (m · s) · s−1 ≡ m (mod p)

Proof.
The proof is essentially baked into the procedure. We rely on the existence of s−1, which exists
because s is a power of g and g is primitive.

Carman S. Cater Public Key Cryptography 25 / 48

How does Elgamal Work?

Procedure (Public = {p, g , gn, gm}, Private = {n,m})
1 Perform the Diffie-Hellman Key Exchange and arrive at the shared secret key

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

2 Alice converts her plaintext message m into an element of Z∗
p and computes

c ≡ m · s (mod p)

She sends the ciphertext c to Bob

3 Bob computes the inverse of s

4 Bob recovers the plaintext message by computing

c · s−1 ≡ (m · s) · s−1 ≡ m (mod p)

Proof.
The proof is essentially baked into the procedure. We rely on the existence of s−1, which exists
because s is a power of g and g is primitive.

Carman S. Cater Public Key Cryptography 25 / 48

How does Elgamal Work?

Procedure (Public = {p, g , gn, gm}, Private = {n,m})
1 Perform the Diffie-Hellman Key Exchange and arrive at the shared secret key

s ≡ (gn)m ≡ (gm)n ≡ gm·n (mod p)

2 Alice converts her plaintext message m into an element of Z∗
p and computes

c ≡ m · s (mod p)

She sends the ciphertext c to Bob

3 Bob computes the inverse of s

4 Bob recovers the plaintext message by computing

c · s−1 ≡ (m · s) · s−1 ≡ m (mod p)

Proof.
The proof is essentially baked into the procedure. We rely on the existence of s−1, which exists
because s is a power of g and g is primitive.

Carman S. Cater Public Key Cryptography 25 / 48

Example of Elgamal with Small Numbers

Example

1 Take the prime p = 29, and primitive element g = 2

2 Alice randomly chooses n = 5, Bob randomly chooses m = 12

3 Alice computes gn ≡ 25 ≡ 3 (mod 29)

4 Bob computes gm ≡ 212 ≡ 7 (mod 29)

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 16 (mod 29)

6 Alice takes message m = 26 and sends Bob the ciphertext

c ≡ m · s ≡ 26 · 16 ≡ 10 (mod 29)

7 Bob computes s−1 = 20 and retrieves the plaintext by computing

m ≡ c · s−1 ≡ (m · s) · s−1 ≡ 10 · 20 ≡ 26 (mod 29)

Carman S. Cater Public Key Cryptography 26 / 48

Example of Elgamal with Small Numbers

Example

1 Take the prime p = 29, and primitive element g = 2

2 Alice randomly chooses n = 5, Bob randomly chooses m = 12

3 Alice computes gn ≡ 25 ≡ 3 (mod 29)

4 Bob computes gm ≡ 212 ≡ 7 (mod 29)

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 16 (mod 29)

6 Alice takes message m = 26 and sends Bob the ciphertext

c ≡ m · s ≡ 26 · 16 ≡ 10 (mod 29)

7 Bob computes s−1 = 20 and retrieves the plaintext by computing

m ≡ c · s−1 ≡ (m · s) · s−1 ≡ 10 · 20 ≡ 26 (mod 29)

Carman S. Cater Public Key Cryptography 26 / 48

Example of Elgamal with Small Numbers

Example

1 Take the prime p = 29, and primitive element g = 2

2 Alice randomly chooses n = 5, Bob randomly chooses m = 12

3 Alice computes gn ≡ 25 ≡ 3 (mod 29)

4 Bob computes gm ≡ 212 ≡ 7 (mod 29)

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 16 (mod 29)

6 Alice takes message m = 26 and sends Bob the ciphertext

c ≡ m · s ≡ 26 · 16 ≡ 10 (mod 29)

7 Bob computes s−1 = 20 and retrieves the plaintext by computing

m ≡ c · s−1 ≡ (m · s) · s−1 ≡ 10 · 20 ≡ 26 (mod 29)

Carman S. Cater Public Key Cryptography 26 / 48

Example of Elgamal with Small Numbers

Example

1 Take the prime p = 29, and primitive element g = 2

2 Alice randomly chooses n = 5, Bob randomly chooses m = 12

3 Alice computes gn ≡ 25 ≡ 3 (mod 29)

4 Bob computes gm ≡ 212 ≡ 7 (mod 29)

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 16 (mod 29)

6 Alice takes message m = 26 and sends Bob the ciphertext

c ≡ m · s ≡ 26 · 16 ≡ 10 (mod 29)

7 Bob computes s−1 = 20 and retrieves the plaintext by computing

m ≡ c · s−1 ≡ (m · s) · s−1 ≡ 10 · 20 ≡ 26 (mod 29)

Carman S. Cater Public Key Cryptography 26 / 48

Example of Elgamal with Small Numbers

Example

1 Take the prime p = 29, and primitive element g = 2

2 Alice randomly chooses n = 5, Bob randomly chooses m = 12

3 Alice computes gn ≡ 25 ≡ 3 (mod 29)

4 Bob computes gm ≡ 212 ≡ 7 (mod 29)

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 16 (mod 29)

6 Alice takes message m = 26 and sends Bob the ciphertext

c ≡ m · s ≡ 26 · 16 ≡ 10 (mod 29)

7 Bob computes s−1 = 20 and retrieves the plaintext by computing

m ≡ c · s−1 ≡ (m · s) · s−1 ≡ 10 · 20 ≡ 26 (mod 29)

Carman S. Cater Public Key Cryptography 26 / 48

Example of Elgamal with Small Numbers

Example

1 Take the prime p = 29, and primitive element g = 2

2 Alice randomly chooses n = 5, Bob randomly chooses m = 12

3 Alice computes gn ≡ 25 ≡ 3 (mod 29)

4 Bob computes gm ≡ 212 ≡ 7 (mod 29)

5 The shared secret key is s ≡ (gn)m ≡ (gm)n ≡ 16 (mod 29)

6 Alice takes message m = 26 and sends Bob the ciphertext

c ≡ m · s ≡ 26 · 16 ≡ 10 (mod 29)

7 Bob computes s−1 = 20 and retrieves the plaintext by computing

m ≡ c · s−1 ≡ (m · s) · s−1 ≡ 10 · 20 ≡ 26 (mod 29)

Carman S. Cater Public Key Cryptography 26 / 48

Example of Elgamal in SageMath

Here are the functions we will use in SageMath to demo the Elgamal
Encryption Scheme.

In [297]: def encode(s):

s = str(s) # make input a string

return sum(ord(s[i])*256^i for i in range(len(s)))

In [298]: def decode(n):

n = Integer(n) # make input an integer

v = []

while n != 0:

v.append(chr(n % 256))

n = n//256 # this replaces n by floor(n/256)

return ’’.join(v)

In [299]: def encryptElgamal(m, k):

return lift(Mod(m*k, p)) # Multiply message by the private key

In [264]: def decryptElgamal(c, k):

kInverse = inverse_mod(Integer(k), Integer(p)) # Compute the inverse of the private key

return lift(Mod(c*kInverse, p))

Let’s looks at a live demo with a large bit length.

Carman S. Cater Public Key Cryptography 27 / 48

Closing Remarks on Elgamal

Security
I Same as Diffie-Hellman, if the discrete logarithm can be solved, it can

be broken.

I A more subtle attack can be used which changes the message that
Alice is trying to send

1 If an eavesdropper is able to intercept c ≡ m · s (mod p), she can
replace it with r · c ≡ r ·m · s (mod p) for some element r

2 When Bob decrypts, he gets

r · c · s−1 ≡ r · (m · s) · s−1 ≡ r ·m (mod p)

3 In the event this is a bank transaction, we could manipulate the value
being sent

Carman S. Cater Public Key Cryptography 28 / 48

Closing Remarks on Elgamal

Security
I Same as Diffie-Hellman, if the discrete logarithm can be solved, it can

be broken.
I A more subtle attack can be used which changes the message that

Alice is trying to send

1 If an eavesdropper is able to intercept c ≡ m · s (mod p), she can
replace it with r · c ≡ r ·m · s (mod p) for some element r

2 When Bob decrypts, he gets

r · c · s−1 ≡ r · (m · s) · s−1 ≡ r ·m (mod p)

3 In the event this is a bank transaction, we could manipulate the value
being sent

Carman S. Cater Public Key Cryptography 28 / 48

Closing Remarks on Elgamal

Security
I Same as Diffie-Hellman, if the discrete logarithm can be solved, it can

be broken.
I A more subtle attack can be used which changes the message that

Alice is trying to send
1 If an eavesdropper is able to intercept c ≡ m · s (mod p), she can

replace it with r · c ≡ r ·m · s (mod p) for some element r

2 When Bob decrypts, he gets

r · c · s−1 ≡ r · (m · s) · s−1 ≡ r ·m (mod p)

3 In the event this is a bank transaction, we could manipulate the value
being sent

Carman S. Cater Public Key Cryptography 28 / 48

Closing Remarks on Elgamal

Security
I Same as Diffie-Hellman, if the discrete logarithm can be solved, it can

be broken.
I A more subtle attack can be used which changes the message that

Alice is trying to send
1 If an eavesdropper is able to intercept c ≡ m · s (mod p), she can

replace it with r · c ≡ r ·m · s (mod p) for some element r
2 When Bob decrypts, he gets

r · c · s−1 ≡ r · (m · s) · s−1 ≡ r ·m (mod p)

3 In the event this is a bank transaction, we could manipulate the value
being sent

Carman S. Cater Public Key Cryptography 28 / 48

RSA Encryption - Rivest, Shamir, Adleman (1977)

About RSA

How Does RSA Work?
I Example with Small Numbers
I Example in SageMath

How to Break RSA

Factorization Problem
I Attacks Against the FP in

RSA

Closing Remarks on RSA
Figure: Ron Rivest, Adi Shamir, and
Leonard Adleman Image: https://cdn.firespring.

com/images/bf650823-bb00-4999-ad53-30b967fe948d.jpg

Carman S. Cater Public Key Cryptography 29 / 48

https://cdn.firespring.com/images/bf650823-bb00-4999-ad53-30b967fe948d.jpg
https://cdn.firespring.com/images/bf650823-bb00-4999-ad53-30b967fe948d.jpg

About RSA

First described publicly in 1977 by Ron Rivest, Adi Shamir, and
Leonard Adleman

A similar scheme was discovered four years earlier, in 1973 by Clifford
Cocks of the British signals intelligence agency. It was not declassified
until 1997

The security of the algorithm relies on the difficulty of factoring the
product of large primes

Generally used to transmit secret keys to then be used with a
symmetric key algorithm

Carman S. Cater Public Key Cryptography 30 / 48

About RSA

First described publicly in 1977 by Ron Rivest, Adi Shamir, and
Leonard Adleman

A similar scheme was discovered four years earlier, in 1973 by Clifford
Cocks of the British signals intelligence agency. It was not declassified
until 1997

The security of the algorithm relies on the difficulty of factoring the
product of large primes

Generally used to transmit secret keys to then be used with a
symmetric key algorithm

Carman S. Cater Public Key Cryptography 30 / 48

About RSA

First described publicly in 1977 by Ron Rivest, Adi Shamir, and
Leonard Adleman

A similar scheme was discovered four years earlier, in 1973 by Clifford
Cocks of the British signals intelligence agency. It was not declassified
until 1997

The security of the algorithm relies on the difficulty of factoring the
product of large primes

Generally used to transmit secret keys to then be used with a
symmetric key algorithm

Carman S. Cater Public Key Cryptography 30 / 48

About RSA

First described publicly in 1977 by Ron Rivest, Adi Shamir, and
Leonard Adleman

A similar scheme was discovered four years earlier, in 1973 by Clifford
Cocks of the British signals intelligence agency. It was not declassified
until 1997

The security of the algorithm relies on the difficulty of factoring the
product of large primes

Generally used to transmit secret keys to then be used with a
symmetric key algorithm

Carman S. Cater Public Key Cryptography 30 / 48

How does RSA Work?

Procedure (Public = {n, e}, Private = {p, q, d})
1 Alice picks two large prime numbers p and q, and computes n = p · q

2 Alice computes Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Alice chooses a random integer e such that 1 < e < ϕ(n) and
gcd(e, ϕ(n)) = 1

4 Alice finds a solution d to the equation e · d ≡ 1 (mod ϕ(n))

5 Now by publishing the pair (n, e), anyone can encrypt an encoded
message x to Alice by computing and sending

E (x) ≡ xe (mod n)

6 To decrypt, Alice computes

D(xe) ≡ (xe)d ≡ x (mod n)

Carman S. Cater Public Key Cryptography 31 / 48

How does RSA Work?

Procedure (Public = {n, e}, Private = {p, q, d})
1 Alice picks two large prime numbers p and q, and computes n = p · q
2 Alice computes Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Alice chooses a random integer e such that 1 < e < ϕ(n) and
gcd(e, ϕ(n)) = 1

4 Alice finds a solution d to the equation e · d ≡ 1 (mod ϕ(n))

5 Now by publishing the pair (n, e), anyone can encrypt an encoded
message x to Alice by computing and sending

E (x) ≡ xe (mod n)

6 To decrypt, Alice computes

D(xe) ≡ (xe)d ≡ x (mod n)

Carman S. Cater Public Key Cryptography 31 / 48

How does RSA Work?

Procedure (Public = {n, e}, Private = {p, q, d})
1 Alice picks two large prime numbers p and q, and computes n = p · q
2 Alice computes Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Alice chooses a random integer e such that 1 < e < ϕ(n) and
gcd(e, ϕ(n)) = 1

4 Alice finds a solution d to the equation e · d ≡ 1 (mod ϕ(n))

5 Now by publishing the pair (n, e), anyone can encrypt an encoded
message x to Alice by computing and sending

E (x) ≡ xe (mod n)

6 To decrypt, Alice computes

D(xe) ≡ (xe)d ≡ x (mod n)

Carman S. Cater Public Key Cryptography 31 / 48

How does RSA Work?

Procedure (Public = {n, e}, Private = {p, q, d})
1 Alice picks two large prime numbers p and q, and computes n = p · q
2 Alice computes Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Alice chooses a random integer e such that 1 < e < ϕ(n) and
gcd(e, ϕ(n)) = 1

4 Alice finds a solution d to the equation e · d ≡ 1 (mod ϕ(n))

5 Now by publishing the pair (n, e), anyone can encrypt an encoded
message x to Alice by computing and sending

E (x) ≡ xe (mod n)

6 To decrypt, Alice computes

D(xe) ≡ (xe)d ≡ x (mod n)

Carman S. Cater Public Key Cryptography 31 / 48

How does RSA Work?

Procedure (Public = {n, e}, Private = {p, q, d})
1 Alice picks two large prime numbers p and q, and computes n = p · q
2 Alice computes Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Alice chooses a random integer e such that 1 < e < ϕ(n) and
gcd(e, ϕ(n)) = 1

4 Alice finds a solution d to the equation e · d ≡ 1 (mod ϕ(n))

5 Now by publishing the pair (n, e), anyone can encrypt an encoded
message x to Alice by computing and sending

E (x) ≡ xe (mod n)

6 To decrypt, Alice computes

D(xe) ≡ (xe)d ≡ x (mod n)

Carman S. Cater Public Key Cryptography 31 / 48

How does RSA Work?

Procedure (Public = {n, e}, Private = {p, q, d})
1 Alice picks two large prime numbers p and q, and computes n = p · q
2 Alice computes Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Alice chooses a random integer e such that 1 < e < ϕ(n) and
gcd(e, ϕ(n)) = 1

4 Alice finds a solution d to the equation e · d ≡ 1 (mod ϕ(n))

5 Now by publishing the pair (n, e), anyone can encrypt an encoded
message x to Alice by computing and sending

E (x) ≡ xe (mod n)

6 To decrypt, Alice computes

D(xe) ≡ (xe)d ≡ x (mod n)

Carman S. Cater Public Key Cryptography 31 / 48

How does RSA Work? (cont.)

Borrowed from [Paar and Pelzl 2010]

Proof.
Given a ciphertext xe , we need to show that (xe)d ≡ x (mod n).

First recall that by hypothesis we have e, d such that e · d ≡ 1 (mod ϕ(n)). This gives us
e · d = 1 + t · ϕ(n) for some integer t. Plugging this in to the congruence above we get

xe·d ≡ x1+t·ϕ(n) ≡ (xϕ(n))t · x (mod n)

We now consider two cases.

Case 1: gcd(x , n) = 1

By Euler’s Theorem we have that xϕ(n) ≡ 1 (mod n). This immediately gives us our result

(xϕ(n))t · x ≡ 1t · x ≡ x (mod n)

Continued on next page...

Carman S. Cater Public Key Cryptography 32 / 48

How does RSA Work? (cont.)

Borrowed from [Paar and Pelzl 2010]

Proof.
Given a ciphertext xe , we need to show that (xe)d ≡ x (mod n).

First recall that by hypothesis we have e, d such that e · d ≡ 1 (mod ϕ(n)). This gives us
e · d = 1 + t · ϕ(n) for some integer t. Plugging this in to the congruence above we get

xe·d ≡ x1+t·ϕ(n) ≡ (xϕ(n))t · x (mod n)

We now consider two cases.

Case 1: gcd(x , n) = 1

By Euler’s Theorem we have that xϕ(n) ≡ 1 (mod n). This immediately gives us our result

(xϕ(n))t · x ≡ 1t · x ≡ x (mod n)

Continued on next page...

Carman S. Cater Public Key Cryptography 32 / 48

How does RSA Work? (cont.)

Borrowed from [Paar and Pelzl 2010]

Proof.
Given a ciphertext xe , we need to show that (xe)d ≡ x (mod n).

First recall that by hypothesis we have e, d such that e · d ≡ 1 (mod ϕ(n)). This gives us
e · d = 1 + t · ϕ(n) for some integer t. Plugging this in to the congruence above we get

xe·d ≡ x1+t·ϕ(n) ≡ (xϕ(n))t · x (mod n)

We now consider two cases.

Case 1: gcd(x , n) = 1

By Euler’s Theorem we have that xϕ(n) ≡ 1 (mod n). This immediately gives us our result

(xϕ(n))t · x ≡ 1t · x ≡ x (mod n)

Continued on next page...

Carman S. Cater Public Key Cryptography 32 / 48

How does RSA Work? (cont.)

Proof.
Case 2: gcd(x , n) = gcd(x , p · q) 6= 1

Given that p and q are primes, it follows that x must have one of them as a factor.
Without loss of generality, assume that x = r · p for some integer r such that r < q. Since
gcd(x , q) = 1 we have by Euler’s Theorem

(xϕ(q))t ≡ 1t ≡ 1 (mod q)

We now look at (xϕ(n))t again, giving us

(xϕ(n))t ≡ (x(q−1)(p−1))t ≡ ((xϕ(q))t)(p−1) ≡ 1(p−1) ≡ 1 (mod q)

Now for some integer u this gives us

(xϕ(n))t = 1 + u · q

Continued on next page...

Carman S. Cater Public Key Cryptography 33 / 48

How does RSA Work? (cont.)

Proof.
Case 2: gcd(x , n) = gcd(x , p · q) 6= 1

Given that p and q are primes, it follows that x must have one of them as a factor.
Without loss of generality, assume that x = r · p for some integer r such that r < q. Since
gcd(x , q) = 1 we have by Euler’s Theorem

(xϕ(q))t ≡ 1t ≡ 1 (mod q)

We now look at (xϕ(n))t again, giving us

(xϕ(n))t ≡ (x(q−1)(p−1))t ≡ ((xϕ(q))t)(p−1) ≡ 1(p−1) ≡ 1 (mod q)

Now for some integer u this gives us

(xϕ(n))t = 1 + u · q

Continued on next page...

Carman S. Cater Public Key Cryptography 33 / 48

How does RSA Work? (cont.)

Proof.
Case 2: gcd(x , n) = gcd(x , p · q) 6= 1

Given that p and q are primes, it follows that x must have one of them as a factor.
Without loss of generality, assume that x = r · p for some integer r such that r < q. Since
gcd(x , q) = 1 we have by Euler’s Theorem

(xϕ(q))t ≡ 1t ≡ 1 (mod q)

We now look at (xϕ(n))t again, giving us

(xϕ(n))t ≡ (x(q−1)(p−1))t ≡ ((xϕ(q))t)(p−1) ≡ 1(p−1) ≡ 1 (mod q)

Now for some integer u this gives us

(xϕ(n))t = 1 + u · q

Continued on next page...

Carman S. Cater Public Key Cryptography 33 / 48

How does RSA Work? (cont.)

Proof.
Case 2: gcd(x , n) = gcd(x , p · q) 6= 1 (cont.)

Multiplying both sides of the equality above by x gives us

(xϕ(n))t · x = (1 + u · q) · x
= x + x · u · q
= x + (r · p) · u · q
= x + r · u · (p · q)

= x + r · u · n
(xϕ(n))t · x ≡ x (mod n)

Which was the desired result. Thus in either case we see that we have successfully
decrypted our ciphertext xe by exponentiating

(xe)d ≡ x1+t·ϕ(n) ≡ (xϕ(n))t · x ≡ x (mod n)

Carman S. Cater Public Key Cryptography 34 / 48

How does RSA Work? (cont.)

Proof.
Case 2: gcd(x , n) = gcd(x , p · q) 6= 1 (cont.)

Multiplying both sides of the equality above by x gives us

(xϕ(n))t · x = (1 + u · q) · x
= x + x · u · q
= x + (r · p) · u · q
= x + r · u · (p · q)

= x + r · u · n
(xϕ(n))t · x ≡ x (mod n)

Which was the desired result. Thus in either case we see that we have successfully
decrypted our ciphertext xe by exponentiating

(xe)d ≡ x1+t·ϕ(n) ≡ (xϕ(n))t · x ≡ x (mod n)

Carman S. Cater Public Key Cryptography 34 / 48

Example of RSA with Small Numbers

Example
Public = {n, e}, Private = {p, q, d})

1 Alice randomly chooses p = 17 and q = 19, so that n = p · q = 17 · 19 = 323

2 Alice computes ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = 16 · 18 = 288

3 Alice randomly chooses an 1 < e < 288 such that gcd(e, 288) = 1. We take e = 95

4 Alice solves the linear congruence

95 · d ≡ 1 (mod 288)

Using the Extended Euclidean Algorithm, we find that d = 191 solves the equation

5 Alice shares the public key (n, e) = (323, 95) with Bob

6 Bob can take an encoded message x = 123, encrypt it and send it to Alice

c ≡ xe ≡ 12395 ≡ 149 (mod 323)

7 Alice decrypts by computing

x ≡ cd ≡ (xe)d ≡ 149191 ≡ 123 (mod 323)

Carman S. Cater Public Key Cryptography 35 / 48

Example of RSA with Small Numbers

Example
Public = {n, e}, Private = {p, q, d})

1 Alice randomly chooses p = 17 and q = 19, so that n = p · q = 17 · 19 = 323

2 Alice computes ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = 16 · 18 = 288

3 Alice randomly chooses an 1 < e < 288 such that gcd(e, 288) = 1. We take e = 95

4 Alice solves the linear congruence

95 · d ≡ 1 (mod 288)

Using the Extended Euclidean Algorithm, we find that d = 191 solves the equation

5 Alice shares the public key (n, e) = (323, 95) with Bob

6 Bob can take an encoded message x = 123, encrypt it and send it to Alice

c ≡ xe ≡ 12395 ≡ 149 (mod 323)

7 Alice decrypts by computing

x ≡ cd ≡ (xe)d ≡ 149191 ≡ 123 (mod 323)

Carman S. Cater Public Key Cryptography 35 / 48

Example of RSA with Small Numbers

Example
Public = {n, e}, Private = {p, q, d})

1 Alice randomly chooses p = 17 and q = 19, so that n = p · q = 17 · 19 = 323

2 Alice computes ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = 16 · 18 = 288

3 Alice randomly chooses an 1 < e < 288 such that gcd(e, 288) = 1. We take e = 95

4 Alice solves the linear congruence

95 · d ≡ 1 (mod 288)

Using the Extended Euclidean Algorithm, we find that d = 191 solves the equation

5 Alice shares the public key (n, e) = (323, 95) with Bob

6 Bob can take an encoded message x = 123, encrypt it and send it to Alice

c ≡ xe ≡ 12395 ≡ 149 (mod 323)

7 Alice decrypts by computing

x ≡ cd ≡ (xe)d ≡ 149191 ≡ 123 (mod 323)

Carman S. Cater Public Key Cryptography 35 / 48

Example of RSA with Small Numbers

Example
Public = {n, e}, Private = {p, q, d})

1 Alice randomly chooses p = 17 and q = 19, so that n = p · q = 17 · 19 = 323

2 Alice computes ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = 16 · 18 = 288

3 Alice randomly chooses an 1 < e < 288 such that gcd(e, 288) = 1. We take e = 95

4 Alice solves the linear congruence

95 · d ≡ 1 (mod 288)

Using the Extended Euclidean Algorithm, we find that d = 191 solves the equation

5 Alice shares the public key (n, e) = (323, 95) with Bob

6 Bob can take an encoded message x = 123, encrypt it and send it to Alice

c ≡ xe ≡ 12395 ≡ 149 (mod 323)

7 Alice decrypts by computing

x ≡ cd ≡ (xe)d ≡ 149191 ≡ 123 (mod 323)

Carman S. Cater Public Key Cryptography 35 / 48

Example of RSA with Small Numbers

Example
Public = {n, e}, Private = {p, q, d})

1 Alice randomly chooses p = 17 and q = 19, so that n = p · q = 17 · 19 = 323

2 Alice computes ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = 16 · 18 = 288

3 Alice randomly chooses an 1 < e < 288 such that gcd(e, 288) = 1. We take e = 95

4 Alice solves the linear congruence

95 · d ≡ 1 (mod 288)

Using the Extended Euclidean Algorithm, we find that d = 191 solves the equation

5 Alice shares the public key (n, e) = (323, 95) with Bob

6 Bob can take an encoded message x = 123, encrypt it and send it to Alice

c ≡ xe ≡ 12395 ≡ 149 (mod 323)

7 Alice decrypts by computing

x ≡ cd ≡ (xe)d ≡ 149191 ≡ 123 (mod 323)

Carman S. Cater Public Key Cryptography 35 / 48

Example of RSA with Small Numbers

Example
Public = {n, e}, Private = {p, q, d})

1 Alice randomly chooses p = 17 and q = 19, so that n = p · q = 17 · 19 = 323

2 Alice computes ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = 16 · 18 = 288

3 Alice randomly chooses an 1 < e < 288 such that gcd(e, 288) = 1. We take e = 95

4 Alice solves the linear congruence

95 · d ≡ 1 (mod 288)

Using the Extended Euclidean Algorithm, we find that d = 191 solves the equation

5 Alice shares the public key (n, e) = (323, 95) with Bob

6 Bob can take an encoded message x = 123, encrypt it and send it to Alice

c ≡ xe ≡ 12395 ≡ 149 (mod 323)

7 Alice decrypts by computing

x ≡ cd ≡ (xe)d ≡ 149191 ≡ 123 (mod 323)

Carman S. Cater Public Key Cryptography 35 / 48

Example of RSA in SageMath

Implementation of the RSA Encryption Scheme.

In [1]: def encode(s):

s = str(s) # make input a string

return sum(ord(s[i])*256^i for i in range(len(s))) # Base 256 for ASCII

In [2]: def decode(n):

n = Integer(n) # make input an integer

v = []

while n != 0:

v.append(chr(n % 256))

n = n//256 # this replaces n by floor(n/256)

return ’’.join(v)

In [34]: def rsa(bits):

p = next_prime(ZZ.random_element(2^(bits)))

q = next_prime(ZZ.random_element(2^(bits)))

n = p*q

phi_n = (p-1)*(q-1)

while True:

e = ZZ.random_element(1, phi_n)

if gcd(e, phi_n) == 1: break

d = lift(Mod(e, phi_n)^(-1))

return e, d, n, p, q, phi_n

In [35]: def encrypt(m, e, n):

return lift(Mod(m, n)^e)

In [36]: def decrypt(c, d, n):

return lift(Mod(c, n)^d)

Let’s looks at a live demo encrypting text using a large bit size

Carman S. Cater Public Key Cryptography 36 / 48

How to Break RSA

Currently the most promising approach to solving the RSA problem is to
factor the modulus n. This is in general not an easy task.

Procedure
1 Factor n = p · q
2 Compute Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Find a solution d to the equation e · d ≡ 1 (mod ϕ(n))

With the decryption key d in hand, any message captured can be
decrypted

Before we talk about factorization in general, let’s explore a particular case
when ϕ(n) is known.

Carman S. Cater Public Key Cryptography 37 / 48

How to Break RSA

Currently the most promising approach to solving the RSA problem is to
factor the modulus n. This is in general not an easy task.

Procedure
1 Factor n = p · q
2 Compute Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Find a solution d to the equation e · d ≡ 1 (mod ϕ(n))

With the decryption key d in hand, any message captured can be
decrypted

Before we talk about factorization in general, let’s explore a particular case
when ϕ(n) is known.

Carman S. Cater Public Key Cryptography 37 / 48

How to Break RSA

Currently the most promising approach to solving the RSA problem is to
factor the modulus n. This is in general not an easy task.

Procedure
1 Factor n = p · q
2 Compute Euler’s Totient function ϕ(n) = (p − 1) · (q − 1)

3 Find a solution d to the equation e · d ≡ 1 (mod ϕ(n))

With the decryption key d in hand, any message captured can be
decrypted

Before we talk about factorization in general, let’s explore a particular case
when ϕ(n) is known.

Carman S. Cater Public Key Cryptography 37 / 48

How to Break RSA (cont.)

Factoring n = p · q given n and ϕ(n)
1 Expand

ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = p · q − (p + q) + 1

2 Rearrange
p + q = p · q + 1− ϕ(n) = n + 1− ϕ(n)

3 We now have a polynomial whose roots are precisely p and q

x2 − (p + q)x + p · q = x2 − (n + 1− ϕ(n)) · x + n

= (x − p) · (x − q)

4 Plugging in the known values n and ϕ(n) we find the roots using the quadratic formula

Let’s do a live example of the implementation in SageMath

In [52]: def crack_rsa(n, phi_n):

R.<x> = PolynomialRing(QQ)

f = x^2 - (n+1 - phi_n)*x + n

return [b for b, _ in f.roots()]

Carman S. Cater Public Key Cryptography 38 / 48

How to Break RSA (cont.)

Factoring n = p · q given n and ϕ(n)
1 Expand

ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = p · q − (p + q) + 1

2 Rearrange
p + q = p · q + 1− ϕ(n) = n + 1− ϕ(n)

3 We now have a polynomial whose roots are precisely p and q

x2 − (p + q)x + p · q = x2 − (n + 1− ϕ(n)) · x + n

= (x − p) · (x − q)

4 Plugging in the known values n and ϕ(n) we find the roots using the quadratic formula

Let’s do a live example of the implementation in SageMath

In [52]: def crack_rsa(n, phi_n):

R.<x> = PolynomialRing(QQ)

f = x^2 - (n+1 - phi_n)*x + n

return [b for b, _ in f.roots()]

Carman S. Cater Public Key Cryptography 38 / 48

How to Break RSA (cont.)

Factoring n = p · q given n and ϕ(n)
1 Expand

ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = p · q − (p + q) + 1

2 Rearrange
p + q = p · q + 1− ϕ(n) = n + 1− ϕ(n)

3 We now have a polynomial whose roots are precisely p and q

x2 − (p + q)x + p · q = x2 − (n + 1− ϕ(n)) · x + n

= (x − p) · (x − q)

4 Plugging in the known values n and ϕ(n) we find the roots using the quadratic formula

Let’s do a live example of the implementation in SageMath

In [52]: def crack_rsa(n, phi_n):

R.<x> = PolynomialRing(QQ)

f = x^2 - (n+1 - phi_n)*x + n

return [b for b, _ in f.roots()]

Carman S. Cater Public Key Cryptography 38 / 48

How to Break RSA (cont.)

Factoring n = p · q given n and ϕ(n)
1 Expand

ϕ(n) = ϕ(p · q) = (p − 1) · (q − 1) = p · q − (p + q) + 1

2 Rearrange
p + q = p · q + 1− ϕ(n) = n + 1− ϕ(n)

3 We now have a polynomial whose roots are precisely p and q

x2 − (p + q)x + p · q = x2 − (n + 1− ϕ(n)) · x + n

= (x − p) · (x − q)

4 Plugging in the known values n and ϕ(n) we find the roots using the quadratic formula

Let’s do a live example of the implementation in SageMath

In [52]: def crack_rsa(n, phi_n):

R.<x> = PolynomialRing(QQ)

f = x^2 - (n+1 - phi_n)*x + n

return [b for b, _ in f.roots()]

Carman S. Cater Public Key Cryptography 38 / 48

Factorization Problem

Factorization Problem (FP)

Given a positive integer n, find primes pi and nonnegative ei such that

n =
k∏

i=1

peii

In the case of RSA, we are only concerned with integers of the form

n = p · q

Example

Factor n = 482062495360027223

Solution p = 899910527 and q = 535678249

Carman S. Cater Public Key Cryptography 39 / 48

Factorization Problem

Factorization Problem (FP)

Given a positive integer n, find primes pi and nonnegative ei such that

n =
k∏

i=1

peii

In the case of RSA, we are only concerned with integers of the form

n = p · q

Example

Factor n = 482062495360027223

Solution p = 899910527 and q = 535678249

Carman S. Cater Public Key Cryptography 39 / 48

Attacks Against the FP in RSA

Note: It can be shown that for n = p · q where p ≤ q we have p ≤
√
n

Brute Force Attack on RSA (Very slow)

Checking all integers

def factorBruteForce(n):

s = Integer(int(round(sqrt(n))))

r = 2

while r < s:

if n % r == 0:

return r, n/r

r += 1

Checking only primes

def factorBruteForcev2(n):

s = Integer(int(round(sqrt(n))))

for r in prime_range(2, s + 1):

if n % r == 0:

return r, n/r

It may appear that the implementation on right would be better. However,
even SageMath throws the error ”ValueError: Cannot compute primes
beyond 436273290”.

Carman S. Cater Public Key Cryptography 40 / 48

Attacks Against the FP in RSA

Note: It can be shown that for n = p · q where p ≤ q we have p ≤
√
n

Brute Force Attack on RSA (Very slow)

Checking all integers

def factorBruteForce(n):

s = Integer(int(round(sqrt(n))))

r = 2

while r < s:

if n % r == 0:

return r, n/r

r += 1

Checking only primes

def factorBruteForcev2(n):

s = Integer(int(round(sqrt(n))))

for r in prime_range(2, s + 1):

if n % r == 0:

return r, n/r

It may appear that the implementation on right would be better. However,
even SageMath throws the error ”ValueError: Cannot compute primes
beyond 436273290”.

Carman S. Cater Public Key Cryptography 40 / 48

Attacks Against the FP in RSA

Note: It can be shown that for n = p · q where p ≤ q we have p ≤
√
n

Brute Force Attack on RSA (Very slow)

Checking all integers

def factorBruteForce(n):

s = Integer(int(round(sqrt(n))))

r = 2

while r < s:

if n % r == 0:

return r, n/r

r += 1

Checking only primes

def factorBruteForcev2(n):

s = Integer(int(round(sqrt(n))))

for r in prime_range(2, s + 1):

if n % r == 0:

return r, n/r

It may appear that the implementation on right would be better. However,
even SageMath throws the error ”ValueError: Cannot compute primes
beyond 436273290”.

Carman S. Cater Public Key Cryptography 40 / 48

Attacks Against the FP in RSA (cont.)

When p and q are Close (Fermat Factorization Method)
1 It is widely known that any odd number can be written as a difference of two squares

n = a2 − b2 = (a + b) · (a− b)

2 If n = p · q is a factorization then we have

n =

(
p + q

2

)2

−
(
p − q

2

)2

3 Given that p and q are close, s = p−q
2

is small, and t = p+q
2

is slightly larger than
√
n

4 Substituting s and t into the above equation and rearranging we see that

t2 − n = s2

5 So we just try t = d
√
ne, d

√
ne+ 1, d

√
ne+ 2, . . . until t2 − n is a perfect square s2

6 By adding and subtracting s = p−q
2

and t = p+q
2

we get our formulas

p = t + s, q = t − s

Carman S. Cater Public Key Cryptography 41 / 48

Attacks Against the FP in RSA (cont.)

When p and q are Close (Fermat Factorization Method)
1 It is widely known that any odd number can be written as a difference of two squares

n = a2 − b2 = (a + b) · (a− b)

2 If n = p · q is a factorization then we have

n =

(
p + q

2

)2

−
(
p − q

2

)2

3 Given that p and q are close, s = p−q
2

is small, and t = p+q
2

is slightly larger than
√
n

4 Substituting s and t into the above equation and rearranging we see that

t2 − n = s2

5 So we just try t = d
√
ne, d

√
ne+ 1, d

√
ne+ 2, . . . until t2 − n is a perfect square s2

6 By adding and subtracting s = p−q
2

and t = p+q
2

we get our formulas

p = t + s, q = t − s

Carman S. Cater Public Key Cryptography 41 / 48

Attacks Against the FP in RSA (cont.)

When p and q are Close (Fermat Factorization Method)
1 It is widely known that any odd number can be written as a difference of two squares

n = a2 − b2 = (a + b) · (a− b)

2 If n = p · q is a factorization then we have

n =

(
p + q

2

)2

−
(
p − q

2

)2

3 Given that p and q are close, s = p−q
2

is small, and t = p+q
2

is slightly larger than
√
n

4 Substituting s and t into the above equation and rearranging we see that

t2 − n = s2

5 So we just try t = d
√
ne, d

√
ne+ 1, d

√
ne+ 2, . . . until t2 − n is a perfect square s2

6 By adding and subtracting s = p−q
2

and t = p+q
2

we get our formulas

p = t + s, q = t − s

Carman S. Cater Public Key Cryptography 41 / 48

Attacks Against the FP in RSA (cont.)

When p and q are Close (Fermat Factorization Method)
1 It is widely known that any odd number can be written as a difference of two squares

n = a2 − b2 = (a + b) · (a− b)

2 If n = p · q is a factorization then we have

n =

(
p + q

2

)2

−
(
p − q

2

)2

3 Given that p and q are close, s = p−q
2

is small, and t = p+q
2

is slightly larger than
√
n

4 Substituting s and t into the above equation and rearranging we see that

t2 − n = s2

5 So we just try t = d
√
ne, d

√
ne+ 1, d

√
ne+ 2, . . . until t2 − n is a perfect square s2

6 By adding and subtracting s = p−q
2

and t = p+q
2

we get our formulas

p = t + s, q = t − s

Carman S. Cater Public Key Cryptography 41 / 48

Attacks Against the FP in RSA (cont.)

When p and q are Close (Fermat Factorization Method)
1 It is widely known that any odd number can be written as a difference of two squares

n = a2 − b2 = (a + b) · (a− b)

2 If n = p · q is a factorization then we have

n =

(
p + q

2

)2

−
(
p − q

2

)2

3 Given that p and q are close, s = p−q
2

is small, and t = p+q
2

is slightly larger than
√
n

4 Substituting s and t into the above equation and rearranging we see that

t2 − n = s2

5 So we just try t = d
√
ne, d

√
ne+ 1, d

√
ne+ 2, . . . until t2 − n is a perfect square s2

6 By adding and subtracting s = p−q
2

and t = p+q
2

we get our formulas

p = t + s, q = t − s

Carman S. Cater Public Key Cryptography 41 / 48

Attacks Against the FP in RSA (cont.)

When p and q are Close (Fermat Factorization Method)
1 It is widely known that any odd number can be written as a difference of two squares

n = a2 − b2 = (a + b) · (a− b)

2 If n = p · q is a factorization then we have

n =

(
p + q

2

)2

−
(
p − q

2

)2

3 Given that p and q are close, s = p−q
2

is small, and t = p+q
2

is slightly larger than
√
n

4 Substituting s and t into the above equation and rearranging we see that

t2 − n = s2

5 So we just try t = d
√
ne, d

√
ne+ 1, d

√
ne+ 2, . . . until t2 − n is a perfect square s2

6 By adding and subtracting s = p−q
2

and t = p+q
2

we get our formulas

p = t + s, q = t − s

Carman S. Cater Public Key Cryptography 41 / 48

Attacks Against the FP (cont.)
Let’s look at a small example when p and q are close

Example
1 Take n = 23360947609, then d

√
n ≈ 152842.88e = 152843

2 Start checking

I If t = 152843, then s =
√
t2 − n ≈ 187.18

I If t = 152844, then s =
√
t2 − n ≈ 583.71

I If t = 152845, then s =
√
t2 − n = 804

3 Thus p = t + s = 153649 and q = t − s = 152041

Here is the implementation in SageMath, let’s look at a live demo

def crack_when_pq_close(n):

t = Integer(ceil(sqrt(n)))

while True:

k = t^2 - n

if k <= 0: break

if k > 0:

s = Integer(int(round(sqrt(t^2 - n))))

if s^2 + n == t^2:

return t + s, t - s

t += 1

Carman S. Cater Public Key Cryptography 42 / 48

Attacks Against the FP (cont.)
Let’s look at a small example when p and q are close

Example
1 Take n = 23360947609, then d

√
n ≈ 152842.88e = 152843

2 Start checking

I If t = 152843, then s =
√
t2 − n ≈ 187.18

I If t = 152844, then s =
√
t2 − n ≈ 583.71

I If t = 152845, then s =
√
t2 − n = 804

3 Thus p = t + s = 153649 and q = t − s = 152041

Here is the implementation in SageMath, let’s look at a live demo

def crack_when_pq_close(n):

t = Integer(ceil(sqrt(n)))

while True:

k = t^2 - n

if k <= 0: break

if k > 0:

s = Integer(int(round(sqrt(t^2 - n))))

if s^2 + n == t^2:

return t + s, t - s

t += 1

Carman S. Cater Public Key Cryptography 42 / 48

Attacks Against the FP (cont.)
Let’s look at a small example when p and q are close

Example
1 Take n = 23360947609, then d

√
n ≈ 152842.88e = 152843

2 Start checking

I If t = 152843, then s =
√
t2 − n ≈ 187.18

I If t = 152844, then s =
√
t2 − n ≈ 583.71

I If t = 152845, then s =
√
t2 − n = 804

3 Thus p = t + s = 153649 and q = t − s = 152041

Here is the implementation in SageMath, let’s look at a live demo

def crack_when_pq_close(n):

t = Integer(ceil(sqrt(n)))

while True:

k = t^2 - n

if k <= 0: break

if k > 0:

s = Integer(int(round(sqrt(t^2 - n))))

if s^2 + n == t^2:

return t + s, t - s

t += 1

Carman S. Cater Public Key Cryptography 42 / 48

Attacks Against the FP (cont.)
Let’s look at a small example when p and q are close

Example
1 Take n = 23360947609, then d

√
n ≈ 152842.88e = 152843

2 Start checking

I If t = 152843, then s =
√
t2 − n ≈ 187.18

I If t = 152844, then s =
√
t2 − n ≈ 583.71

I If t = 152845, then s =
√
t2 − n = 804

3 Thus p = t + s = 153649 and q = t − s = 152041

Here is the implementation in SageMath, let’s look at a live demo

def crack_when_pq_close(n):

t = Integer(ceil(sqrt(n)))

while True:

k = t^2 - n

if k <= 0: break

if k > 0:

s = Integer(int(round(sqrt(t^2 - n))))

if s^2 + n == t^2:

return t + s, t - s

t += 1

Carman S. Cater Public Key Cryptography 42 / 48

Closing Remarks on RSA

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

It is recommended to use 617 decimal digit numbers, or 2048 bits for
the modulus

The largest RSA number factored to date is RSA-250, has 250
decimal digits (829 bits), and was factored in February 2020

The next largest RSA number is RSA-260 (862 bits)
2211282552952966643528108525502623092761208950247001539441374831912882

2941402001986512729726569746599085900330031400051170742204560859276357

9537571859542988389587092292384910067030341246205457845664136645406842

14361293017694020846391065875914794251435144458199

List of Records for factoring RSA numbers
https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Carman S. Cater Public Key Cryptography 43 / 48

https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Closing Remarks on RSA

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

It is recommended to use 617 decimal digit numbers, or 2048 bits for
the modulus

The largest RSA number factored to date is RSA-250, has 250
decimal digits (829 bits), and was factored in February 2020

The next largest RSA number is RSA-260 (862 bits)
2211282552952966643528108525502623092761208950247001539441374831912882

2941402001986512729726569746599085900330031400051170742204560859276357

9537571859542988389587092292384910067030341246205457845664136645406842

14361293017694020846391065875914794251435144458199

List of Records for factoring RSA numbers
https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Carman S. Cater Public Key Cryptography 43 / 48

https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Closing Remarks on RSA

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

It is recommended to use 617 decimal digit numbers, or 2048 bits for
the modulus

The largest RSA number factored to date is RSA-250, has 250
decimal digits (829 bits), and was factored in February 2020

The next largest RSA number is RSA-260 (862 bits)
2211282552952966643528108525502623092761208950247001539441374831912882

2941402001986512729726569746599085900330031400051170742204560859276357

9537571859542988389587092292384910067030341246205457845664136645406842

14361293017694020846391065875914794251435144458199

List of Records for factoring RSA numbers
https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Carman S. Cater Public Key Cryptography 43 / 48

https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Closing Remarks on RSA

The best known attacks against RSA are
I General number field sieve for classical computers
I Shor’s algorithm for quantum computers

It is recommended to use 617 decimal digit numbers, or 2048 bits for
the modulus

The largest RSA number factored to date is RSA-250, has 250
decimal digits (829 bits), and was factored in February 2020

The next largest RSA number is RSA-260 (862 bits)
2211282552952966643528108525502623092761208950247001539441374831912882

2941402001986512729726569746599085900330031400051170742204560859276357

9537571859542988389587092292384910067030341246205457845664136645406842

14361293017694020846391065875914794251435144458199

List of Records for factoring RSA numbers
https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Carman S. Cater Public Key Cryptography 43 / 48

https://en.wikipedia.org/wiki/RSA_numbers#RSA-2048

Closing Remarks
Elliptic Curve Cryptography

I Gives us higher security with smaller keys for Diffie-Hellman

I Factorization algorithms use Elliptic Curves
F Pollards (p - 1) Method
F Lenstra’s Method

I E (K) = {(x , y) ∈ K × K : y2 = x3 + ax + b} ∪ {O}
F K a finite field, E an elliptic curve, O identity element

I Operation is Point Addition

E: y2 = x3 +−5x + 4 K = Z37 (1, 0) + (0, 2) = (3, 4)

Carman S. Cater Public Key Cryptography 44 / 48

Closing Remarks
Elliptic Curve Cryptography

I Gives us higher security with smaller keys for Diffie-Hellman
I Factorization algorithms use Elliptic Curves

F Pollards (p - 1) Method
F Lenstra’s Method

I E (K) = {(x , y) ∈ K × K : y2 = x3 + ax + b} ∪ {O}
F K a finite field, E an elliptic curve, O identity element

I Operation is Point Addition

E: y2 = x3 +−5x + 4 K = Z37 (1, 0) + (0, 2) = (3, 4)

Carman S. Cater Public Key Cryptography 44 / 48

Closing Remarks
Elliptic Curve Cryptography

I Gives us higher security with smaller keys for Diffie-Hellman
I Factorization algorithms use Elliptic Curves

F Pollards (p - 1) Method
F Lenstra’s Method

I E (K) = {(x , y) ∈ K × K : y2 = x3 + ax + b} ∪ {O}
F K a finite field, E an elliptic curve, O identity element

I Operation is Point Addition

E: y2 = x3 +−5x + 4 K = Z37

(1, 0) + (0, 2) = (3, 4)

Carman S. Cater Public Key Cryptography 44 / 48

Closing Remarks
Elliptic Curve Cryptography

I Gives us higher security with smaller keys for Diffie-Hellman
I Factorization algorithms use Elliptic Curves

F Pollards (p - 1) Method
F Lenstra’s Method

I E (K) = {(x , y) ∈ K × K : y2 = x3 + ax + b} ∪ {O}
F K a finite field, E an elliptic curve, O identity element

I Operation is Point Addition

E: y2 = x3 +−5x + 4 K = Z37 (1, 0) + (0, 2) = (3, 4)

Carman S. Cater Public Key Cryptography 44 / 48

Closing Remarks (cont.)

The Future of Computer Security
I Cryptography is a fast paced field with many current developments.

The security of our technology depends on it

I As quantum computers are further developed, certain security schemes
in use may become vulnerable to attack

I Shor’s algorithm which is shown to work on quantum computers may
pose serious threats to RSA and Diffie-Hellman

Further Areas to Explore

I Classical algorithms used to speed up the factorization problem and
discrete log problem

F Quadratic Sieve (under 100 digits)
F General Number Field Sieve (integers larger than 10100)

I Elliptic Curve Algorithms
I Quantum Computers as it relates to cryptography

F Shor’s Algorithm

Carman S. Cater Public Key Cryptography 45 / 48

Closing Remarks (cont.)

The Future of Computer Security
I Cryptography is a fast paced field with many current developments.

The security of our technology depends on it
I As quantum computers are further developed, certain security schemes

in use may become vulnerable to attack

I Shor’s algorithm which is shown to work on quantum computers may
pose serious threats to RSA and Diffie-Hellman

Further Areas to Explore

I Classical algorithms used to speed up the factorization problem and
discrete log problem

F Quadratic Sieve (under 100 digits)
F General Number Field Sieve (integers larger than 10100)

I Elliptic Curve Algorithms
I Quantum Computers as it relates to cryptography

F Shor’s Algorithm

Carman S. Cater Public Key Cryptography 45 / 48

Closing Remarks (cont.)

The Future of Computer Security
I Cryptography is a fast paced field with many current developments.

The security of our technology depends on it
I As quantum computers are further developed, certain security schemes

in use may become vulnerable to attack
I Shor’s algorithm which is shown to work on quantum computers may

pose serious threats to RSA and Diffie-Hellman

Further Areas to Explore

I Classical algorithms used to speed up the factorization problem and
discrete log problem

F Quadratic Sieve (under 100 digits)
F General Number Field Sieve (integers larger than 10100)

I Elliptic Curve Algorithms
I Quantum Computers as it relates to cryptography

F Shor’s Algorithm

Carman S. Cater Public Key Cryptography 45 / 48

Closing Remarks (cont.)

The Future of Computer Security
I Cryptography is a fast paced field with many current developments.

The security of our technology depends on it
I As quantum computers are further developed, certain security schemes

in use may become vulnerable to attack
I Shor’s algorithm which is shown to work on quantum computers may

pose serious threats to RSA and Diffie-Hellman

Further Areas to Explore
I Classical algorithms used to speed up the factorization problem and

discrete log problem
F Quadratic Sieve (under 100 digits)
F General Number Field Sieve (integers larger than 10100)

I Elliptic Curve Algorithms
I Quantum Computers as it relates to cryptography

F Shor’s Algorithm

Carman S. Cater Public Key Cryptography 45 / 48

Closing Remarks (cont.)

The Future of Computer Security
I Cryptography is a fast paced field with many current developments.

The security of our technology depends on it
I As quantum computers are further developed, certain security schemes

in use may become vulnerable to attack
I Shor’s algorithm which is shown to work on quantum computers may

pose serious threats to RSA and Diffie-Hellman

Further Areas to Explore
I Classical algorithms used to speed up the factorization problem and

discrete log problem
F Quadratic Sieve (under 100 digits)
F General Number Field Sieve (integers larger than 10100)

I Elliptic Curve Algorithms

I Quantum Computers as it relates to cryptography

F Shor’s Algorithm

Carman S. Cater Public Key Cryptography 45 / 48

Closing Remarks (cont.)

The Future of Computer Security
I Cryptography is a fast paced field with many current developments.

The security of our technology depends on it
I As quantum computers are further developed, certain security schemes

in use may become vulnerable to attack
I Shor’s algorithm which is shown to work on quantum computers may

pose serious threats to RSA and Diffie-Hellman

Further Areas to Explore
I Classical algorithms used to speed up the factorization problem and

discrete log problem
F Quadratic Sieve (under 100 digits)
F General Number Field Sieve (integers larger than 10100)

I Elliptic Curve Algorithms
I Quantum Computers as it relates to cryptography

F Shor’s Algorithm

Carman S. Cater Public Key Cryptography 45 / 48

Thank you, I hope you all stay safe and
well!

Carman S. Cater

Carman S. Cater Public Key Cryptography 46 / 48

References

Buchanan, William J., Cryptography , Rivers Publishers, 2017.
Available electronically through CCSU library.

Stein, William, Elementary Number Theory: Primes, Congruences,
and Secrets , Springer, 2009. Available free from author
https://wstein.org/ent/.

Paar, Christof; Pelzl, Jan, Understanding Cryptography: A Textbook
for Students and Practioners , Springer, 2010.

History of Cryptography;
https://en.wikipedia.org/wiki/History_of_cryptography

Carman S. Cater Public Key Cryptography 47 / 48

https://en.wikipedia.org/wiki/History_of_cryptography

Image Links

Diffie and Hellman:
https://news.stanford.edu/news/2016/march/images/16185-turingtwo_news.jpg

Elgamal: https://evolutionequity.com/team/taher-elgamal

Rivest, Shamir, Adleman:
https://cdn.firespring.com/images/bf650823-bb00-4999-ad53-30b967fe948d.jpg

Al-Kindi: https://en.wikipedia.org/wiki/File:Al-kindi_cryptographic.gif

ROT13: https://en.wikipedia.org/wiki/Substitution_cipher#/media/File:ROT13.png

M-94: https://en.wikipedia.org/wiki/M-94#/media/File:Ytm94_1b.jpg

Enigma: https://en.wikipedia.org/wiki/Enigma_machine#/media/File:

Enigma_(crittografia)_-_Museo_scienza_e_tecnologia_Milano.jpg

Carman S. Cater Public Key Cryptography 48 / 48

https://news.stanford.edu/news/2016/march/images/16185-turingtwo_news.jpg
https://evolutionequity.com/team/taher-elgamal
https://cdn.firespring.com/images/bf650823-bb00-4999-ad53-30b967fe948d.jpg
https://en.wikipedia.org/wiki/File:Al-kindi_cryptographic.gif
https://en.wikipedia.org/wiki/Substitution_cipher#/media/File:ROT13.png
https://en.wikipedia.org/wiki/M-94#/media/File:Ytm94_1b.jpg
https://en.wikipedia.org/wiki/Enigma_machine#/media/File:Enigma_(crittografia)_-_Museo_scienza_e_tecnologia_Milano.jpg
https://en.wikipedia.org/wiki/Enigma_machine#/media/File:Enigma_(crittografia)_-_Museo_scienza_e_tecnologia_Milano.jpg

	Introduction to Cryptography
	Number Theory Background
	Diffie-Hellman Key Exchange (1976)
	Elgamal Encryption Scheme (1985)
	RSA Encryption - Rivest, Shamir, Adleman (1977)
	Closing Remarks

